
Oracle Financial Services

Installation and Configuration Guide

Release 4.5

July 2000

Part No. A80992-01

Oracle Financial Services Installation and Configuration Guide, Release 4.5

Part No. A80992-01

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.

Primary Authors: Rob Flippo, Steven Roepke

Contributing Authors: Kevin Holliday, Bart Stoehr, Steve Wasserman

Technical Reviewers: Sue Bernstein, Victor Cheung, Lee Coller, Kevin Courtney, Kelley Fon-Ndikum,
Greg Hall, John Lightfoot, Rondi Mertes, Sergi Semenov

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited. Program
documentation is licensed for use solely to support the deployment of the Programs and not for any
other purpose.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

Program Documentation is licensed for use solely to support the deployment of the Program and not for
any other purpose.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are “commercial
computer software” and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are “restricted computer
software” and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Budgeting & Planning, Oracle Customer Householding,
Oracle Financial Data Manager, Oracle Financial Data Manager Administration, Oracle Financial Data
Manager Balance & Control, Oracle Financial Data Manager Data Dictionary, Oracle Financial Data
Manager Rate Manager, Oracle Financial Data Manager Reporting Administration Guide, Oracle
Performance Analyzer, Oracle Risk Manager, and Oracle Transfer Pricing are trademarks or registered
trademarks of Oracle Corporation.

iii

Contents

Send Us Your Comments .. xxiii

Preface... xxv

1 Introduction

Oracle Financial Services Overview ... 1-2
OFS Applications.. 1-2

2 New Features and Terminology

New Terminology ... 2-1
OFSA versus FDM... 2-1

New Features ... 2-2
Document Changes .. 2-4

3 Certifications

Server-Side Certification Statement ... 3-2
Client-Side Certification Statement .. 3-3

4 System Description

Application Components .. 4-1
Database Component.. 4-1
Server-side Component .. 4-1
Client-side Component... 4-2

iv

System Environment .. 4-2
Three-tier Client/Server Environment... 4-2
Data Sourcing Environment... 4-2

Database Connectivity ... 4-2
A Network Protocol .. 4-2
SQL*Net and NET8 ... 4-2

Database Description ... 4-3

5 System Requirements

Client-side Requirements.. 5-1

6 UNIX Server Installation and Configuration

Preparing Your Server for Installation.. 6-1
Installation Choices .. 6-1
Prior to Installation... 6-2

Storage Requirements ... 6-2
Required User and Group .. 6-3

Installing the OFSA Server-Centric Application.. 6-3
Installing OFSA on Sun Servers.. 6-3
Installing OFSA on a Hewlett Packard Server ... 6-8
Installing OFSA on an IBM-AIX and Compaq Alpha Server... 6-12
Creating and Locating the OFS.INI File .. 6-14

Components of the OFS.INI File ... 6-14
Configuring OFSA Server-Centric Applications.. 6-15

Application .INI Settings ... 6-16
Configuring Paths.. 6-16
Ledger_Stat Buffer Size... 6-17
Transfer Pricing Migration Buffer Size... 6-18
Upsert Method ... 6-19

Shared Memory .INI Setting ... 6-19
Calculating the Shared Memory Usage.. 6-20
Changing the .INI Setting... 6-22

Determining Shared Resource Requirements... 6-22
Adjusting UNIX Kernel Parameters.. 6-23

Effect of Changing Kernel Parameters .. 6-24

v

Parameters Affecting System-wide Resources.. 6-24
Shmmni (HPUX, Compaq), shmsys:shminfo_shmmni (Sun)....................................... 6-24
Semmni (HPUX, Compaq), semsys:seminfo_semmni (Sun) .. 6-24
Semmns (HPUX), semsys:seminfo_semmns (Sun) .. 6-25
Nproc (HPUX, Compaq), max_nprocs (Sun) .. 6-25
Maxuprc (HPUX, Sun, Compaq)... 6-25

Parameters Affecting Per-process Resources ... 6-25
SVMMLIM.. 6-25
HDATLIM .. 6-25
Shmseg (HPUX, Compaq), shmsys:shminfo_shmseg (Sun) ... 6-25
Shmmax (HPUX, Compaq), shmsys:shminfo_shmmax (Sun)...................................... 6-26
Shmsys:shminfo_shmmin (Sun).. 6-26

Determining Application-Specific Memory Requirements... 6-26
Total Memory Requirements for the OFSA Group of Applications 6-26
Memory Requirements for Balance & Control... 6-26
Memory Requirements for Performance Analyzer ... 6-27
Memory Requirements for Transfer Pricing... 6-27

Transfer Pricing ID.. 6-27
Prepayment ID... 6-28
Historical Rates ID .. 6-28
Cash Flow Processing Structures .. 6-28
Ledger_Stat Buffer Size .. 6-29
Monte Carlo Rate Generator.. 6-29
Size of Data Migration Array... 6-29

Memory Requirements for Risk Manager .. 6-29
Prepayment ID... 6-30
Discount Rate ID.. 6-30
Forecast Balance ID ... 6-30
Maturity Strategy ID ... 6-30
Pricing Margin ID.. 6-30
Transaction Strategy ID.. 6-31
Leaf Characteristics ID.. 6-31
Formula Leaves ID .. 6-31
Forecast Rates ID ... 6-31

Memory Requirements for the Transformation Engine ... 6-31

vi

Ledger Transformation... 6-32
Risk Manager Transformation... 6-32

Configuring the Request Queue Log File .. 6-32
Sun Environment Variables ... 6-33
HP-UX Environment Variables ... 6-33
IBM-AIX Environment Variables .. 6-34

Other Configuration Issues .. 6-35
Capturing SQL for Database Optimization .. 6-35

.INI [debug] Section of the Application-specific .INI Files.. 6-35
Core Files.. 6-36
Cleaning Shared Resources ... 6-36
Multiple OFSA Server-Centric Application Instances .. 6-37

7 Client Software Installation and Configuration

Verifying the Correct Client Workstation Software ... 7-1
Verifying the Installation of the Client Workstation Environment................................ 7-2
Verifying the Installation of Your Network Protocol... 7-2

Installing the Client-Side OFSA Software... 7-3
Installing on Windows 95/98 ... 7-3
16-bit and 32-bit Installations.. 7-3
Required Technology Components ... 7-3
Installing the Software ... 7-4

Installing the 16-bit Components .. 7-4
Installing the 32-bit Components and OFSA Applications ... 7-6
Installing Discoverer with FDM Administration.. 7-9
Installing Budgeting & Planning... 7-9
Installing Discoverer Integrator .. 7-9
Installing FDM Administration ... 7-10

Installing the Documentation HTML Help Files.. 7-10
Software Required for HTML Help Files... 7-11
Browser Support for HTML Help Files.. 7-11

Configuring SQL*Net and Oracle NET8 ... 7-11
Establishing the Link Between the Client Workstation and the Database.................. 7-13

Configuring ODBC... 7-13
Modifying the OFS.INI File ... 7-14

vii

Data Sources... 7-14
Tree Rollup Save Behavior Settings.. 7-15
Request Queue Communication Settings .. 7-16

Upgrading the Client-Side Software .. 7-16
Setting the Date Format in NT 4.0 ... 7-17
Troubleshooting Client Installations .. 7-17
Running Multiple OFSA Applications Simultaneously .. 7-20
.INI Settings ... 7-20
Debug Settings .. 7-23
Application-Specific Settings... 7-24

Balance & Control... 7-24
Performance Analyzer ... 7-25

Client PC Memory Considerations ... 7-25

8 Budgeting & Planning Server-Side Installation and Setup

Before Installing Budgeting & Planning ... 8-2
Installing the OFSA Group of Applications ... 8-5

Budgeting & Planning Server Installation .. 8-5
Installing the FSBPTOOL and FSLANG Databases .. 8-6
Recovery Procedures.. 8-8
Creating the Budgeting & Planning Structures and Data .. 8-9
Coordinating Budgeting & Planning Metadata with the FDM Database 8-9
Adding a User-defined Dimension.. 8-10
Setting Operating System Privileges in UNIX ... 8-10
Defining FSBPTOOL as the Primary Custom Database ... 8-11
Backing Up the Budgeting & Planning and OFA Databases ... 8-12
Configuring the OFA Subordinate Administrators... 8-12

Administering the Budgeting & Planning Databases ... 8-12
Configuring the Web Listener and Java Client ... 8-13

Testing the Technology Stack ... 8-13
Creating the Virtual Directories ... 8-13
Configuring the Timeout Parameters.. 8-15
Installing the files into the virtual directory ... 8-16
Editing the HTML Start Page.. 8-17

Editing HTML Files for Internet Explorer ... 8-17

viii

Editing HTML Files for Netscape ... 8-19

9 Budgeting & Planning Database Upgrade Process

Installing the Technology Stack ... 9-1
Testing the technology stack ... 9-2

Installing the Budgeting & Planning Code Databases and Files .. 9-3
If you are using NT…... 9-3
If you are using UNIX... ... 9-3

Upgrading the Super Administrator’s Personal Database ... 9-4
Completing the Database Upgrade Process... 9-6

10 FDM Database Installation

Installing the Oracle Applications .. 10-1
Installing the Oracle Database-related Components... 10-2
Checking the Installation for Errors or Failures ... 10-2

Setting up the Physical Structure of the Oracle Database .. 10-2
Structure Files.. 10-3
Parameter Files.. 10-3

Required Parameters for OFSA ... 10-4
Performance Parameters for OFSA... 10-5

Packages ... 10-9
Database Tablespaces and Datafiles .. 10-10

FDM Tablespaces... 10-10
FDM Datafiles .. 10-11
Table and Index Partitioning ... 10-12
Partitioning Example .. 10-13

Configuring the FDM Database... 10-15
Creating the Working Directories .. 10-15
Setting init Parameters ... 10-15

Creating the FDM Database ... 10-16
Modifying the FDM Database Scripts.. 10-17
Creating the Oracle Java VM... 10-18
Creating the FDM Schema... 10-18

Functional Currency.. 10-18
Running the Install Procedure... 10-19

ix

Completing the Procedure .. 10-23

11 Upgrading from OFSA 3.5/4.0

Rename of FDM Reserved Objects to OFSA_... 11-2
Portfolio Instrument and Services Tables .. 11-2

Multi-Currency Enablement ... 11-3
TP Option Cost Calculations... 11-3
Table Classification Validation... 11-4

Non-Portfolio Instrument Tables... 11-4
Multi-Currency Enablement ... 11-5
Table Classification Validation... 11-5

LEDGER_STAT ... 11-6
Multi-Currency Enablement ... 11-7

Code Descriptions .. 11-7
FDM Reserved Codes .. 11-7
User Editable Codes ... 11-10
User Defined Codes.. 11-11
Interest Rate Codes... 11-12
Product Type Code... 11-12

Multiprocessing Settings .. 11-14
Financial Elements.. 11-14
PROCESS_CASH_FLOWS ... 11-14
Collateral Data Model.. 11-15
ID Conversions.. 11-15

Allocation ID ... 11-16
Add Missing Leaf Columns ... 11-17
Remove Extraneous Leaf Columns... 11-18
Mirror to Table Update... 11-18
Error Messages... 11-18

Configuration ID... 11-19
Discount Rates ID ... 11-19
Forecast Balance ID .. 11-19

Upgrades from OFSA 3.5 ... 11-19
All Upgrades .. 11-22

Forecast Rates ID .. 11-22

x

Historical Rates ID.. 11-26
Specifying Historical Rates ID Priority .. 11-26
Interest Rate Terms.. 11-30
Rates Conversion ... 11-31

Leaf Characteristics ID ... 11-32
Maturity Strategy ID .. 11-34
Pricing Margin ID ... 11-34
RM Process ID ... 11-34

Upgrades from OFSA 3.5 ... 11-34
All Upgrades .. 11-35

Term Structure ID ... 11-36
TP Process ID... 11-36

OFSA_IDT_PROCESS... 11-36
OFSA_TP_PROC_TABLES... 11-39
OFSA_TP_RATE_PROPAGATIONS.. 11-39

Transaction Strategy ID ... 11-40
Transfer Pricing ID ... 11-42

OFSA_IDT_TRANSFER_PRICE.. 11-42
OFSA_TP_REDEMPTION_CURVE_DTL.. 11-44
OFSA_TP_UNPRICED_ACCT_DTL .. 11-45

12 FDM Database Upgrade Process

Overview of the 4.5 Upgrade Process.. 12-3
Limitations to the Database Upgrade Process.. 12-3

Instrument Table Indexes... 12-3
Multiple LEDGER_STAT Tables (data_code = 7) ... 12-3

Seeded Data Tables and Ranges Affected by the Upgrade .. 12-4
Required Oracle Parameters for the FDM Upgrade Process .. 12-4
Running the Metadata Migration .. 12-6

Review Migration Requirements.. 12-6
Historical Rates Conversion... 12-6
Functional Currency.. 12-8

Prepare Database for Migration ... 12-9
Run migrate_check.sql ... 12-11
Run migrate.sql ... 12-13

xi

Review Migrate Logs ... 12-16
Procedure Logs .. 12-16
Metadata Conversion Logs .. 12-17

Running the Upgrade Procedure ... 12-18
Database Preparation ... 12-18
Running check.sql... 12-19
Executing the Upgrade Procedure ... 12-21
Reviewing the Upgrade Logs ... 12-25

Primary Log Files .. 12-26
Row Count Log File .. 12-28
SQL Loader Logs ... 12-29
ID Conversion Logs .. 12-29
Internal Log Files (safe to ignore) ... 12-30

Password Encryption Changes... 12-30
OFSA Database Problem Conditions and Solutions ... 12-31

ID Errors... 12-33
Client IDs in seeded ID range.. 12-33
Leaf Characteristics ID or Transaction Strategy ID has incorrect number of rows . 12-34
TP Process <sys_id_num> is using invalid Transfer Pricing ID 12-35

General Errors ... 12-36
Client data in the ofsa_correction_proc_msg_cd data range...................................... 12-36
Existing Role conflicts with a seeded Role .. 12-37
Functional Currency not defined or invalid in OFSA_TEMP_DB_INFO................. 12-38
INIT.ora parameters not correct.. 12-39
Invalid data in OFSA_TEMP_IRC_45 .. 12-40
o_ tables have been found.. 12-41

Leaf Errors ... 12-42
Client data in the detail_elem (or ofsa_detail_elem) seeded data range................... 12-42
Client data in the leaf_desc (or ofsa_leaf_desc) seeded data range 12-44
Column_name is null in ofsa_detail_elem .. 12-46
Duplicate column_name values in ofsa_detail_elem... 12-47

User Errors... 12-48
Identical User or User Group names .. 12-48
User running the upgrade must be the FDM schema owner 12-49
User conflicts with seeded Recipient Name or ID Folder ... 12-50

xii

User conflicts with User Group to be created ... 12-51
User conflicts with Security Profile to be created ... 12-52
User or Group in CATALOG_OF_USERS not uppercase ... 12-53
User <username> in HARV_USER not uppercase... 12-54
<group_name> not a valid User Group... 12-55

SYSTEM_CODE_VALUES Errors .. 12-56
Alpha values found in numeric columns... 12-56
Column_name in SYSTEM_CODE_VALUES not uppercase 12-57
Instrument values in SYSTEM_CODE_VALUES not uppercase 12-58
Duplicate values in SYSTEM_CODE_VALUES.. 12-59
NULL values in SYSTEM_CODE_VALUES.. 12-60

SYSTEM_INFO Errors.. 12-61
Duplicate DISPLAY_NAME values in SYSTEM_INFO .. 12-61
Null values found in SYSTEM_INFO columns... 12-62
Tables in SYSTEM_INFO have the same display_name ... 12-65
Table, Column Name or Related_Field in SYSTEM_INFO not uppercase 12-66

13 Installing and Configuring Discoverer

Overview of Discoverer Business Areas .. 13-1
Installing the End User Layer ... 13-2
Upgrading Business Areas from Previous OFSA Versions .. 13-3
Importing OFSA Business Areas for Discoverer .. 13-6
Market Manager Business Areas and Standard Reports .. 13-7
Installing and Configuring the OFSA Standard Reports ... 13-8

14 FDM Security

FDM Schema Owner .. 14-2
Database and Application Privileges.. 14-2
FDM Security Framework ... 14-3

Universal Login... 14-5
Database Object Privileges .. 14-5

Privileges for FDM Reserved Objects ... 14-5
Privileges for Client Data Objects ... 14-5
Privileges for Dynamic Objects ... 14-6

Roles.. 14-6

xiii

Internal and External Roles.. 14-6
Role Registration ... 14-7
Sharing Roles within a Data Store .. 14-7
Role Passwords.. 14-7

Assigning and Revoking Database Privileges.. 14-8
Assigning Database Privileges .. 14-9
Revoking Privileges .. 14-9

Oracle Password Aging, Expiration and History .. 14-10
FDM Grant Procedures.. 14-11

Grant All Object Privileges .. 14-13
Grant All Roles... 14-13
Grant All Dynamic Privileges.. 14-13
Analyze All Objects... 14-13
Create Public Synonyms... 14-14
Troubleshooting FDM Grants Procedures... 14-14

Supporting Seeded Data.. 14-15
Roles .. 14-15
Security Profiles ... 14-20
User Groups ... 14-21

Division of Administrative Responsibilities .. 14-21
Managing Security for the Reporting Data Mart ... 14-22
Troubleshooting Privilege Errors... 14-23
Migration from Version 3.5 or 4.0 Security .. 14-25

Migration of Database Privilevges... 14-25
Database Privileges in OFSA 3.5 and 4.0 ... 14-25
FDM 4.5 Database Privileges for Migrated Users... 14-26

Migration of Application and Menu Privileges ... 14-26
Application and Menu Privileges in OFSA 3.5 and 4.0 ... 14-26
FDM 4.5 Application and Menu (Function) Privileges for Migrated Users 14-27

Guidelines for Managing Security Privileges of Migrated Users...................................... 14-29
Removal of Security Filter ... 14-30

15 FDM Multi-Language Support

Session Language.. 15-2
MLS Database Structures .. 15-3

xiv

The OFSA_MLS Table .. 15-3
Base Tables... 15-3
MLS Tables... 15-4
Language Compatible Views .. 15-4

Creating MLS Objects .. 15-5
Create the Base Table ... 15-6
Create the MLS Table ... 15-6
Create the Language Compatible View... 15-7
Create the Database Triggers .. 15-7

Base Table Trigger ... 15-7
Language Compatible View Trigger .. 15-8

Register Objects in FDM Administration .. 15-9
Table Classification Assignments.. 15-9
Description Table Mapping ... 15-9

Seeded MLS Objects .. 15-10
FDM Metadata Tables .. 15-10
Code Description Tables.. 15-10

16 FDM Object Management

FDM Database Environment .. 16-1
Object Registration ... 16-3

Object Identification ... 16-4
Identifying Objects from Other Schemas ... 16-5

Column Properties.. 16-5
Table Classifications ... 16-6

User Assignable Table Classifications .. 16-6
FDM Reserved Table Classifications .. 16-20
Dynamic Table Classifications... 16-22

FDM Table Properties .. 16-22
Column Name Table Properties .. 16-22
Stored Procedure Table Properties ... 16-32

Description Table Mapping... 16-34
Client Data Objects... 16-35

Instrument and Account.. 16-35
Creating New Instrument and Account Tables .. 16-35

xv

Using Views ... 16-36
Registering Tables in other Schemas .. 16-37
Seeded Instrument and Account Tables .. 16-37

User-Defined Code Descriptions.. 16-39
Single Language Environment .. 16-39
Multi-Language Environment... 16-40
Managing Data for User Defined Code Descriptions .. 16-40

LEDGER_STAT... 16-41
Loading Data into LEDGER_STAT .. 16-41
Maximum Number of Leaves on LEDGER_STAT... 16-41

Free Form... 16-41
Risk Manager Results Tables ... 16-42

Types of Results Tables.. 16-42
Scenario Based Results Tables ... 16-42
Earnings at Risk Results Tables... 16-43

Dynamic Results Table Definition ... 16-43
Transformation Output Tables ... 16-44

Leaf Setup and Output Tables .. 16-44
Template Tables and Indexes ... 16-45

Template Indexes .. 16-46
Naming Restrictions.. 16-47
The OTHER_LEAF_COLUMNS Placeholder Column.. 16-48
User-Defined Indexes ... 16-48
Indexes and Dimension Filters .. 16-48
A Single Index for the Tree Rollup Transformation... 16-49

Table and Index Physical Storage Defaults .. 16-49
The Storage Defaults Tables... 16-49
Storage Defaults by Transformation Type... 16-51
Storage Defaults by Transformation Type + User.. 16-51
Ordering the Parameter Definition Levels .. 16-52

Physical Storage for the Ledger Stat Transformation ... 16-52
Fitting Into Available Freespace.. 16-52
Computing INITIAL and NEXT Storage Parameters .. 16-53
Usage Summary... 16-54
Recommended Usage ... 16-56

xvi

Creating Transformation Output Tables and Indexes: An Example 16-57
Routine Cleanup ... 16-62

Dropping Obsolete Transformation Output Tables ... 16-62
Deleting from OFSA_STP... 16-62

Transformation ID Error Recovery .. 16-62
Temporary Objects.. 16-63
Message and Audit Objects .. 16-63

Audit Tables .. 16-64
OFSA_AUDIT_TRAIL .. 16-64
OFSA_PROCESS_CASH_FLOWS .. 16-64
OFSA_STP... 16-64

Message Tables.. 16-65
OFSA_PROCESS_ERRORS .. 16-65
OFSA_MESSAGE_LOG.. 16-65

Packages, Procedures, and Java Classes ... 16-65
Views and Triggers ... 16-67
Seeded Data Tables and Ranges .. 16-68

FDM Metadata Seeded Tables .. 16-69
Seeded Range Reserved ... 16-69

Range Reserved FDM and Market Manager Shared Tables 16-69
Seeded Range Reserved FDM Only Tables ... 16-70
Seeded Range Reserved Market Manager Only Tables... 16-78

Seeded Unreserved... 16-79
Seeded Unreserved FDM and Market Manager Shared Tables 16-80
Seeded Unreserved FDM Only Tables ... 16-80
Seeded Unreserved Market Manager Only Tables... 16-81

17 FDM Leaf Management

Seeded Leaf Columns .. 17-1
Leaf Registration ... 17-2

Registering a Leaf Column.. 17-3
Step 1: Adding the column to required Objects .. 17-3
Step 2: Re-register Objects .. 17-6
Step 3: Modify Unique Indexes ... 17-7
Step 4: Assign the Processing Key Column Property .. 17-8

xvii

Step 5: Register the Leaf Column.. 17-8
Troubleshooting Leaf Registration... 17-8

Leaf Column already identified as a Portfolio Column... 17-9
Leaf Column is not registered as FDM Data Type LEAF.. 17-9
Column not part of the Process Key ... 17-10

Unregistering a Leaf Column ... 17-10
Managing Leaf Values ... 17-11

18 FDM Database Performance Management

Tuning the FDM Database .. 18-2
Performance Monitoring with BSTAT/ESTAT .. 18-4

BSTAT Tables and Views .. 18-4
ESTAT Tables and Views .. 18-5
Executing BSTAT/ESTAT... 18-6
Library Cache Statistics.. 18-8
System-Wide Statistics Totals ... 18-10

DBWR Checkpoints... 18-11
Cluster Key Scan Block Gets/Scans.. 18-11
Consistent Gets and DB Block Gets .. 18-11
Cumulative Opened Cursors... 18-12
Recursive Calls... 18-13
Redo Size .. 18-13
Redo Log Space Requests... 18-13
Redo Small Copies .. 18-13
Table Scans ... 18-13
Table Fetch by Rowid ... 18-14
Table Fetch by Continued Row ... 18-14
User Calls.. 18-14

System Event Statistics... 18-15
Average Length of Dirty Buffer Write Queue... 18-16

File I/O Statistics .. 18-16
Tablespace I/O Statistic Totals ... 18-17
Willing-To-Wait Latch Statistics... 18-17
No_Wait Latch Statistics.. 18-18
Rollback Segment Statistics... 18-18

xviii

Init.ora Parameters ... 18-19
Data Dictionary Cache Statistics... 18-19
Date/Time ... 18-20

Index Management ... 18-20
Create Indexes After Inserting Table Data.. 18-20

To Manage a Large Index... 18-21
OFSA-Specific Details .. 18-24
Multiprocessing .. 18-24
Updating Statistics.. 18-24
Originally Supplied Indexes in FDM... 18-25
General Recommendations ... 18-25

Managing Partitioned Tables and Indexes .. 18-25
Creating Partitions.. 18-26
Maintaining Partitions ... 18-27
Moving Partitions ... 18-28
Adding Partitions ... 18-29
Dropping Partitions.. 18-29
Truncating Partitions.. 18-32
Splitting Partitions .. 18-34
Splitting Index Partitions... 18-35
Merging Partitions.. 18-35
Merging Table Partitions ... 18-36
Merging Partitioned Indexes... 18-36
Exchanging Table Partitions.. 18-37
Merging Adjacent Table Partitions: Scenario ... 18-37
Rebuilding Index Partitions .. 18-38

Rollback Segment Sizing and Management ... 18-38

19 OFSA Multiprocessing

Multiprocessing Model ... 19-2
Multiprocessing Options... 19-4

Units of Work .. 19-4
Default Unit of Work Definitions.. 19-5
Creating Customized Unit of Work Definitions ... 19-5

Unit of Work Servicing .. 19-6

xix

What is Partitioning? .. 19-6
What is Unit of Work Servicing?... 19-6
Examples of How Worker Processes Service Units of Work .. 19-8

Worker Processes.. 19-10
Specifying Multiprocessing Parameters .. 19-10

Multiprocessing Assignment Levels.. 19-11
Processing Engine ... 19-11
Processing Engine Step... 19-12
OFSA IDs .. 19-12

Defining Multiprocessing.. 19-13
Parameter Tables ... 19-13
How to Specify Parameters.. 19-15

Engine Overrides .. 19-18
Transfer Pricing ... 19-18
Transformation ID... 19-18
Risk Manager ... 19-19
Performance Analyzer .. 19-19

Tuning Multiprocessing .. 19-19
Ledger_Stat Updating.. 19-22
Special Considerations... 19-22

Migration from OFSA 3.5/4.0.. 19-23
Upgrading from OFSA 3.5/4.0 Default Multiprocessing ... 19-23
Upgrading from OFSA 3.5/4.0 Customized Multiprocessing... 19-24
Units of Work .. 19-24

Identifying Custom Unit of Work Definitions .. 19-25
Assigning Unit of Work Definitions... 19-28

Unit of Work Servicing .. 19-29
Worker Processes.. 19-30

Examples... 19-30
... 19-32

20 Request Queue

Single-Host Request Queue ... 20-1
Using Request Queue... 20-2
Launching Request Queue .. 20-4

xx

Using the rq Script to Set Up Request Queue.. 20-4
OFS.INI Settings.. 20-9
Command Line Examples ... 20-9
The OFSA_REQUEST_QUEUE Table.. 20-13
Server Application Arguments... 20-14

Setting the Common Arguments .. 20-15
Setting the Application-specific Arguments... 20-16

Balance & Control.. 20-17
Performance Analyzer .. 20-17
Transfer Pricing.. 20-18
Risk Manager ... 20-18

Troubleshooting .. 20-19
Interpreting the Log File... 20-19
Process Tracking Records... 20-21
Status and Error Messages ... 20-22
Types of Errors Written to the Log File .. 20-23

Interpreting Server Job Return Messages.. 20-24
Bad Usage ... 20-25
Connect Failure .. 20-25
Failed on Fork .. 20-25
Internal Error.. 20-25
Job returned: <number> ... 20-25
Making Request ... 20-26
No memory... 20-26
None: canceled ... 20-26
None: running .. 20-26
No .ini found .. 20-26
Normal .. 20-26
Rights Violation ... 20-26
Session Failure.. 20-26

Multi-Host Request Queue ... 20-27
Installation and Configuration ... 20-27

Launching Dynamic Multi-Host Request Queue ... 20-28
Using the mrq Script to Set Up Dynamic Multi-Host Request Queue 20-28
Configuring Dynamic Multi-Host Request Queue... 20-28

xxi

Client Software Changes - Server Status Window .. 20-29
Database Changes - RQ_STATUS Table ... 20-29
Additional Multi-Host OFS.INI Parameters... 20-30
Troubleshooting.. 20-30

Host Crashes .. 20-30
Master Request Queue Hangs ... 20-31
Debug Option .. 20-31

21 FDM Utilities

Add Leaf ... 21-2
Currency Mapping.. 21-5
Changing Functional Currency .. 21-9

Updating OFSA_DB_INFO... 21-10
Updating Instrument and LEDGER_STAT Tables .. 21-10
Running SET_DEFAULT_CURRENCY .. 21-10

Instrument Templates .. 21-11
Ledger Stat Load ... 21-12

Features .. 21-13
Overview of the Load Process .. 21-14

Limitations.. 21-14
Setup for the Ledger_Stat Load Utility.. 21-15

Customizing lsview.sql .. 21-16
Customizing lsldtbl.sql... 21-17
Customizing lsload.ctl .. 21-21
Running lsview.sql.. 21-22
Running lsldtbl.sql For Each Load Table... 21-22

Running the Ledger_Stat Load Procedure.. 21-23
The Monthly Ledger_Stat Load Process .. 21-23
Running Concurrent Loads with Multiple Load Tables ... 21-28
Undoing Ledger_Stat Load Updates .. 21-28
Using the Update Mode Parameter .. 21-29
Using the Insert Only Parameter... 21-29
Using the Create Offsets Parameter.. 21-30
Troubleshooting the Load Procedure... 21-30

Modify Balance Column Size... 21-31

xxii

Recompiling Packages, Procedures, and Java Classes ... 21-33
Recompiling Views and Triggers ... 21-35
Instrument Synchronization ... 21-36

Tables Requiring Synchronization ... 21-37
Leaf Synchronization.. 21-37

Codes Synchronization .. 21-38
Performance Analyzer Undo Statistics.. 21-39
Executing the SYNCHRONIZE_INSTRUMENT Procedure .. 21-39
Exception Messages.. 21-40

Exception 1: Invalid table ... 21-40
Exception 2: Table is not an Instrument or LEDGER_STAT table 21-41
Exception 3: Leaf Desc has invalid seeded Financial_Elem_ID values 21-41
Exception 4: Table has invalid seeded FINANCIAL_ELEM_ID values.................... 21-41

Reporting Utilities .. 21-41
Overview.. 21-42
Customizing the Control Files .. 21-43

22 Sending Databases to Oracle Support Services

Requirements of Oracle Support Services ... 22-1

A Functional Currencies

Acceptable Values... Appendix-1

Glossary

Index

xxiii

Send Us Your Comments

Oracle Financial Services Installation and Configuration Guide, Release 4.5

Part No. A80992-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail - fsdocmail@us.oracle.com
■ FAX - (650) 506-7200 Attn: Oracle Financials Documentation Manager
■ Postal service:

Oracle Corporation
Oracle Financials Documentation Manager
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.

xxiv

xxv

Preface

This reference guide describes the features of the Oracle Financial Services Installation
and Configuration Guide. This preface describes the following information about the
reference guide:

■ Intended Audience

■ Organization

■ Related Documents

■ Conventions

■ Customer Support Information

Intended Audience
This reference guide is written for Database or System Administrators intending to
install or configure any of the applications within the Oracle Financial Services
Applications (OFSA) group of applications. It assumes familiarity with database
and system administration concepts

xxvi

Organization
This reference guide is organized into the following chapters:

Chapter 1 Introduces the Oracle Financial Services Applications (OFSA)
group of applications. You should read this chapter before using
the detailed information in the remainder of the reference guide.

Chapter 2 Describes new features for the OFSA group of applications, as well
as new terminology used in Release 4.5.

Chapter 3 Provides details on the platforms, operating systems, and software
for which this release of the OFSA group of applications has been
certified.

Chapter 4 Describes the architecture employed by the OFSA group of
applications.

Chapter 5 Describes the recommended client-side hardware requirements for
the OFSA group of applications.

Chapter 6 Provides information on installing the Oracle Financial Services
server-centric software and properly configuring your Unix server.

Chapter 7 Provides information on installing, configuring and upgrading the
client-side of the Oracle Financial Services Applications group of
applications.

Chapter 8 Presents information on the software components required to run
the Budgeting & Planning process and additional installation
routines essential to completing the Budgeting & Planning
installation process.

Chapter 9 Discusses the procedure for upgrading the Budgeting & Planning
Express database.

Chapter 10 Provides information on installing the Financial Data Manager
(FDM) database.

Chapter 11 Provides information for users upgrading from OFSA database
versions 3.5 and 4.0 to the Financial Data Manager 4.5 database.

Chapter 12 Discusses the procedure for upgrading OFSA 3.5/4.0 version
databases to the Financial Data Manager (FDM) database version
4.5.

Chapter 13 Provides information on installing and configuring Oracle
Discoverer for use with Financial Data Manager.

xxvii

This reference guide also contains an index.

Chapter 14 Provides information on the database security framework of the 4.5
Financial Data Manager database.

Chapter 15 Describes the implementation of multi-language support for the
FDM database.

Chapter 16 Provides information on how to manage objects within the FDM
database environment.

Chapter 17 Provides information on how to manage Leaf Columns within the
FDM database.

Chapter 18 Provides information on the duties of the DBA to sustain
performance of the FDM database environment.

Chapter 19 Provides information on configuring the Oracle Financial Services
Application (OFSA) server-centric software for multiprocessing.

Chapter 20 Provides information on configuring the OFSA Request Queue.

Chapter 21 Describes the FDM Utility scripts and how to use them.

Chapter 22 Provides an instructions for sending copies of your FDM database
to Oracle Support Services for assistance.

Appendix A Provides a table that lists the Functional Security values acceptable
for the FDM database creation and database upgrade processes.

xxviii

Related Documents
The following documents provide supplementary information for the subjects
discussed in the Installation and Configuration Guide:

■ Getting to Know Oracle8i

■ Oracle8i Administrator’s Guide

■ Oracle8i Application Developers Guide

■ Oracle8i Concepts

■ Oracle8i Designing and Tuning for Performance

■ Oracle8i Error Messages

■ Oracle8i Reference

■ Oracle8i SQL Reference

■ Oracle8i Utilities

■ Oracle8i Application Developers Guide

■ Oracle Discoverer 3.1 Administration Guide

■ Oracle Discoverer 3.1 User Guide

■ Oracle Financial Data Manager Administration Guide

■ Oracle Server SQL Reference Guide

xxix

Conventions
This reference guide uses the following conventions:

Symbols
■ Bullets indicate a list of items or topics.

1. Numbered lists are used for sequential steps in completing a procedure.

Orientation of Procedures
Procedures in OFSA reference guides are generally menu-driven rather than
command- or icon-driven. Only occasionally is a reference to a toolbar or mouse
action necessary because the action has no menu equivalent. If you prefer to use the
toolbar icons, refer to Chapter 1, "Introduction".

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

bold monospace Bold monospace type in text indicates information that you type in.

Italics Italics emphasize a word or phrase.

< > Angle brackets enclose user-supplied names (for example, <Branch
Name>).

[] Brackets enclose function and terminal keys. In common syntax,
brackets denote one or more optional items.

{ } Braces are used to denote variables, and in command syntax, a choice
within a mandatory item.

Example of command syntax:

Warning: INIT file {filename} already exists.

Example of choices:

{EXIT|QUIT}

-> This arrow indicates a menu path.

xxx

Notes, Cautions, and Warnings
Certain information may be set off in boxes for purposes of emphasis:

■ Note refers to interesting but incidental information about the application or
information that may be important but of lesser degree than a Caution or
Warning.

■ Caution indicates the possibility of damage to an application, system, or data.

■ Warning refers to a situation that is potentially hazardous to people.

Customer Support Information
Customer support is available through Oracle Support Services. Contact your
project manager for information about using the support options offered in your
geographic region. These options may include the following:

■ MetaLink (which provides online access to information about Technical
Libraries, Patches, TARs, and Bugs and is available at metalink.oracle.com)

■ Telephone support

Introduction 1-1

1
Introduction

The Oracle Financial Services Installation and Configuration Guide provides
information about installing and configuring the applications within the Oracle
Financial Services Applications (OFSA) group of applications. This chapter briefly
describes the individual applications within the group.

Oracle Financial Services Overview

1-2 Oracle Financial Services Installation and Configuration Guide

Oracle Financial Services Overview
The Oracle Financial Data Manager (FDM) is the foundation of the Oracle Financial
Services (OFS) group of applications.

OFS Applications
OFS applications form a comprehensive decision support solution that significantly
enhances transfer pricing, budgeting and planning, risk management, and
performance measurement functions across a financial institution.

Oracle Financial Data Manager
Oracle Financial Data Manager (FDM) is a standalone data warehouse with
prepackaged data elements for the financial services industry. FDM is also the
foundation for the OFS applications. It provides the database structures necessary
to support the individual business applications.

Oracle
Financial Data

Manager

Oracle Financial
Data Manager
Administration

Oracle Financial
Data Manager

Balance &
Control

Oracle Transfer
Pricing

 Oracle
Performance

Analyzer

 Oracle Risk
Manager

Oracle Financial
Data Manager
Rate Manager

Oracle
Customer

Householding

Oracle
Budgeting &

Planning

Oracle Financial
Data Manager/

Discoverer
Integrator

Oracle Financial Services Overview

Introduction 1-3

FDM includes Oracle Financial Data Manager Balance & Control, Oracle Financial
Data Manager Administration, Oracle Financial Data Manager/Discoverer
Integrator, and Oracle Financial Data Manager Rate Manager.

Oracle Financial Data Manager Balance & Control Balance & Control validates,
corrects, and aggregates data from the FDM.

Oracle Financial Data Manager Administration FDM Administration manages the
FDM, providing security and maintenance capabilities.

Oracle Financial Data Manager/Discoverer Integrator Discoverer Integrator
integrates the FDM database with Oracle Discoverer, which provides ad hoc
reporting, analysis, and Web publishing capabilities.

Oracle Financial Data Manager Rate Manager FDM Rate Manager manages
interest rate, exchange rate, and currency information for the FDM.

Oracle Budgeting & Planning
 Budgeting & Planning provides performance-based planning. It integrates cash
flow balance sheet and net income forecasting capabilities with the scalability and
customizable framework of Oracle Financial Analyzer, part of the Oracle Express
group of data access and analysis tools.

Oracle Transfer Pricing
 Transfer Pricing calculates a transfer rate for each account and a charge or credit for
funds for each asset or liability.

Oracle Performance Analyzer
 Performance Analyzer provides comprehensive and flexible cost and equity
allocations. It measures product, business unit, and customer profitability.

Oracle Risk Manager
 Risk Manager forecasts cash flows, interest income, and market value in order to
manage rate risk.

Oracle Customer Householding
Customer Householding provides a fully scalable parallel-processing engine for
customer data loading and cleansing, customer relationship linking,
customerization, householding, and data aggregation within FDM.

Oracle Financial Services Overview

1-4 Oracle Financial Services Installation and Configuration Guide

New Features and Terminology 2-1

2
New Features and Terminology

This chapter provides an overview of new features and functionality incorporated
in the installation and upgrade procedures for the Oracle Financial Services
Applications (OFSA) software as well as maintenance and administration. This
chapter also highlights content and organizational changes for the Oracle Financial
Services Installation and Configuration Guide.

New Terminology
The nomenclature used to describe the components and applications that compose
the Oracle Financial Services Applications group of applications is changed in
Release 4.5.

OFSA versus FDM
Previously, the term Oracle Financial Services Applications (OFSA) was used as a
generic reference for anything pertaining to these Oracle Financial Services
Applications. This is no longer a convention for 4.5. Oracle Financial Data Manager
(FDM) is now a more specific term for referring to the database environment
supporting the OFS applications. The term OFSA is used now to refer to the entire
group of business applications for Oracle Financial Services.

All of the documentation, including this guide, uses the following naming
conventions:

Financial Data Manager (FDM)
Financial Data Manager refers to the database environment and tools that support
the Oracle Financial Services Applications group of applications. It consists of the
following individual components:

■ Financial Data Model

New Features

2-2 Oracle Financial Services Installation and Configuration Guide

■ Processing Data Mart

■ Reporting Data Mart

■ Oracle Discoverer Integration

■ Oracle Reports Starter Kit

■ Oracle Balance & Control

■ Oracle Financial Data Manager Administration

■ Oracle Rate Manager

The term Financial Data Manager identifies this collective grouping of components.

The following Oracle Financial Services applications are based upon the FDM
environment:

■ Oracle Performance Analyzer

■ Oracle Risk Manager

■ Oracle Transfer Pricing

The following Oracle Financial Services applications integrate with FDM but are not
based upon the FDM environment:

■ Oracle Budgeting & Planning

■ Oracle Market Manager

Oracle Financial Services Applications (OFSA)
This term identifies the entire Oracle Financial Services Applications group of
products. This term is used to identify operations that are common to all of the
applications in the group.

New Features
This section describes new features relating to software installation, upgrades, and
maintenance.

Supported Operating Systems
The client-side of Release 4.5 is configured to run on either Windows NT 4.0 or
Windows 95/98.

New Features

New Features and Terminology 2-3

Financial Data Manager Administration
The Financial Data Manager Administration application is a new application for
administering and managing the FDM database environment. This application
provides enhanced security and object management functionality, including:

Universal Login
The concept of Universal Database Login indicates the ability to log in to the FDM
database from any application or SQL compatible tool using a single login account.
Previous to Release 4.5, the OFS applications employed password encryption for
database security purposes, thereby prohibiting users from logging into reporting
tools such as Oracle Discoverer with the same login account used for logging into
the OFS applications. FDM 4.5 does not employ user password encryption, enabling
administrators to create a single login account for each user.

Enhanced Security Features
FDM Administration provides enhanced security management capability for
managing the FDM environment. This includes the following:

■ Database Security using Roles

■ Division of Security Management Responsibilities

■ User Groups and Security Profiles

■ Dynamic Privileges

For more information about the security management functionality provided by the
FDM Administration application, refer to the Oracle Financial Data Manager
Administration Guide.

Enhanced Object Management Features
FDM Administration provides new features for customizing and extending your
FDM database. This includes the following

■ Direct Integration with Oracle RDBMS Catalog

■ Object Registration

■ Table Classifications

■ Description Table Mapping

For more information about the security management functionality provided by the
FDM Administration application, refer to the Oracle Financial Data Manager
Administration Guide.

Document Changes

2-4 Oracle Financial Services Installation and Configuration Guide

Database Management Utilities
FDM provides utilities to facility managing the FDM database environment. These
utilities include:

■ Template scripts for Financial Instrument table creation

■ Procedure for altering Balance column definitions

■ Procedure for mapping old 3.5/4.0 Currency Codes to the new ISO
Currency Code implementation.

■ Procedure for synchronizing Leaf values and Code Descriptions

Rate Manager
Rate Manager manages interest rate and exchange rate information for the Financial
Data Manager database, improving upon and replacing Historical Rates ID. Rate
Manager is a component of Financial Data Manager.

Multi-Currency Support
The FDM database environment supports the use of multiple currencies. Financial
values such as account balances and transaction fees can be stored within the
database in multiple currencies for use with OFS application reporting and
processing operations.

Multi-Language Support (MLS)
The FDM database environment supports the use of multiple languages (otherwise known as
Multi-Language Support, or MLS). This feature allows multiple users of different languages
to retrieve information in their own language from the same FDM database.

Functionality Changes in Risk Manager and ID Conversions
Functionality changes in Risk Manager require the conversion of data for the
following three IDs: Prepayment, Forecast Balance, and Process. The ID conversion
routines occur as part of the database upgrade process.

Document Changes
The Oracle Financial Services Installation and Configuration Guide includes technical
information on processes pertaining to maintenance and administration of the FDM
and Budgeting & Planning database environments. It also includes information on
installing, upgrading and configuring these database environments as well as the

Document Changes

New Features and Terminology 2-5

Oracle Financial Services applications. New sections for Release 4.5 include the
following:

Installing and Configuring Discoverer
Procedures for installing the OFSA Discoverer Standard Reports Workbooks are
included in Chapter 13, "Installing and Configuring Discoverer". Previously, the
information in this chapter was presented in both the Database Installation and
Database Upgrade Process chapters.

Upgrading from OFSA 3.5/4.0
This chapter provides information essential for users upgrading from a previous
version of the OFSA group of applications. It explains in detail how the upgrade
process migrates objects and security privileges to the new 4.5 FDM database
environment. Review this chapter prior to beginning your upgrade procedure.

Database Security
This is a new chapter that includes information regarding how FDM implements
database security. The security implementation in FDM 4.5 is significantly different
from that of OFSA 3.5/4.0.

Multi-Language Support
This is a new chapter detailing how Multi-Language Support is implemented
within FDM 4.5.

Object Management
This is a new chapter detailing how to manage the different types of database
objects within the FDM database. Previously, the information in this chapter was
included in the chapter titled Database Administration.

Leaf Management
This is a new chapter detailing how to add and remove Leaf Columns from your
FDM database.

Database Tuning
This chapter provides information on how to tune your FDM database for optimal
performance. Previously, the information in this chapter was included in the
chapter titled Database Administration.

Document Changes

2-6 Oracle Financial Services Installation and Configuration Guide

Sending Databases to Oracle Support Services
In some circumstances, Oracle Support Services may request a copy of your
database in order to replicate a problem or perform some troubleshooting. This
chapter provides instructions on how to send databases to Oracle Support Services
for these purposes.

Certifications 3-1

3
Certifications

This chapter provides details on the platforms, operating systems, and software for
which Release 4.5 of the Oracle Financial Services Applications (OFSA) group of
applications has been certified. The specific topics addressed in this chapter include:

■ Server-Side Certification Statement

■ Client-Side Certification Statement

Caution: The use of non-certified components can cause
unexplained or undesirable system behavior, such as General
Protection Faults or core dumps. Contact the your hardware or
software vendor regarding questions of compatibility and
performance.

Server-Side Certification Statement

3-2 Oracle Financial Services Installation and Configuration Guide

Server-Side Certification Statement
The following table identifies the server-side, qualified hardware and software
components for this release.

Server-Side Certifications for All OFSA Applications Except Budgeting &
Planning

*All operating system certifications include all relevant Y2K patches from the
vendor.

Server-Side Certifications for Budgeting & Planning

Server Operating System Database

Sun Solaris 2.6* with patch 105591-02
and Solaris 2.7*

Oracle8i R2
(8.1.6.x)

HP (9000 Series) HP-UX 11.0* Oracle8i R2
(8.1.6.x)

IBM R/S 6000 AIX 4.3.3* Oracle8i R2
(8.1.6.x)

Compaq Tru64 UNIX 4.0E* Oracle8i R2
(8.1.6.x)

Server
Operating
System Database Listener

NT 4.0 Express Server
6.3.0.1

Oracle
Application
Server 4.0.8.1

HP (9000 Series) HP-UX 11.0 Express Server
6.3.0.1

Oracle
Application
Server 4.0.8.1

IBM R/S 6000 AIX 4.3.3 Express Server
6.3.0.1

Oracle
Application
Server 4.0.8.1

Compaq Tru64 UNIX 4.0E Express Server
6.3.0.1

Oracle
Application
Server 4.0.8.1

Client-Side Certification Statement

Certifications 3-3

Client-Side Certification Statement
The following table identifies the client-side, certified software components for this
release.

OFSA
Applications/Functionality Operating System/ODBC/Database Drivers

All applications/functionality ■ Win NT 4.0 and minimum Service Pack 3 or
Windows 95/98 SR2*

All applications

(except FDM Administration
and Discoverer Integrator)

■ 16-bit SQL*Net Client version 2.3.3.0.1

Budgeting & Planning ■ Financial Analyzer 6.3.0.0 MLE w/Patch #6325_2*

■ Oracle Express Web Agent 6.3.0.1 MLE w/Patch
#owa630_p1*

■ Oracle JInitiator 1.1.7.29 or higher*

Discoverer Integrator ■ Oracle NET8 8.0.4.0.2c

FDM Administration ■ 32-bit SQL*Net Client version 2.3.4.0.2

■ Oracle Developer Forms runtime 6.0

Import/Export functionality for:

■ Balance & Control

■ Performance Analyzer

■ Portfolio Analyzer

■ Risk Manager

■ Transfer Pricing

■ 16-bit Merant version 2.5.3 GA-dbase IV*

Knowledge engines for the
following applications:

■ Balance & Control

■ 16-bit SQL*Net Client version 2.3.3.0.1

Knowledge engines for the
following applications:

■ Performance Analyzer

■ Risk Manager

■ Transfer Pricing

■ Oracle NET8 8.0.4.0.2c

Client-Side Certification Statement

3-4 Oracle Financial Services Installation and Configuration Guide

*Non-Oracle and Oracle Products (such as Oracle Discoverer) not included on the Oracle Installer are categorized as
Third-Party Components. Such components are marked with an asterisk (*) in the table. You need to install these products
separately because they are not included on the OFSA CD.

Oracle Discoverer Standard
Reports

■ Oracle Discoverer 3.1.36*

Oracle Reports Standard Reports ■ Oracle Reports 6.0*

OFSA
Applications/Functionality Operating System/ODBC/Database Drivers

System Description 4-1

4
System Description

The Oracle Financial Services Applications (OFSA) group of applications is
designed to run in a three-tier client/server environment. This chapter provides an
overview of the application’s three primary components and the connectivity
between them.

The following topics are included in this chapter:

■ Application Components

■ System Environment

■ Database Connectivity

■ Database Description

Application Components
The OFSA applications are designed around the following three interrelated
components.

Database Component
The database for this application is an instance with the database schema and
system tables pre-loaded according to the logical data model. This is referred to as
the Oracle Financial Data Manager (FDM) database.

Server-side Component
The server-centric component is a set of application modules (shared libraries and
executables) that run on a UNIX server.

System Environment

4-2 Oracle Financial Services Installation and Configuration Guide

Client-side Component
The client-side component (for either a single or multiple workstations) is a set of
application modules (.DLLs and .EXEs) running on a Windows-based operating
system. These modules communicate with the server-side of the application and the
FDM database through SQL*Net and/or NET8.

System Environment
The OFSA group of applications operates within a three-tier client/server
environment and is capable of providing enterprise-wide operation through a LAN
and WAN.

Three-tier Client/Server Environment
The OFSA engines and FDM database can both be placed on the same server or on
separate servers. This is an optional consideration, dependent upon your
organization’s needs. Some organizations choose to have one server dedicated to
the OFSA engines and another dedicated to the FDM database, while others use one
server for both.

Data Sourcing Environment
Data sourcing, as well as sharing, between multiple clients occurs through the
network connection to the server or servers dedicated to the server-side application
and database. Relevant data can be extracted from multiple sources and loaded into
the Oracle database. This data is used by the application-specific processes, such as
running calculation engines or generating reports.

Database Connectivity
Connectivity to the Oracle database requires two communication applications.

A Network Protocol
A network protocol supplies the communication link between computer systems.
Protocol services handle most network events, errors and security and operate on
dissimilar types of computer systems.

SQL*Net and NET8
SQL*Net and NET8 are the communication components used by Oracle to share
information stored in different Oracle databases. Oracle tools and third party

Database Description

System Description 4-3

applications running on one system can manipulate databases located on other
systems on a network.

Both components provide interfaces for applications to connect to databases over
many different network protocols; TCP/IP is one of the protocols supported.

SQL*Net and NET8 use server processes to listen for client connection requests and
then connect the client to the correct database. SQL*Net version 2 and NET8 are the
current listeners and use Transparent Network Substrate (TNS) to provide
client/server connectivity. This design provides applications with a single, common
interface to all industry-standard protocols.

Database Description
The FDM database contains data extracted from your organization’s mainframe that
the knowledge engines use when performing their functions.

Database Description

4-4 Oracle Financial Services Installation and Configuration Guide

System Requirements 5-1

5
System Requirements

This chapter describes the recommended hardware requirements for the client side
of the three-tier client/server environment.

Client-side Requirements
The recommended common client components include:

1. IBM compatible Pentium 200 Mhz PC

2. SVGA Monitor

3. 32 MB RAM (64 MB RAM is recommended if you are using the Monte Carlo
functionality in Risk Manager)

4. 300 MB free disk space

5. Access to a CD-ROM drive

Client-side Requirements

5-2 Oracle Financial Services Installation and Configuration Guide

UNIX Server Installation and Configuration 6-1

6
UNIX Server Installation and Configuration

This chapter provides information on installing the Oracle Financial Services
Applications (OFSA) server-centric application and properly configuring your
UNIX server.

The following topics are covered in this chapter:

■ Preparing Your Server for Installation

■ Installing the OFSA Server-Centric Application

■ Configuring OFSA Server-Centric Applications

■ Determining Shared Resource Requirements

■ Adjusting UNIX Kernel Parameters

■ Determining Application-Specific Memory Requirements

■ Configuring the Request Queue Log File

■ Other Configuration Issues

Preparing Your Server for Installation
When configuring Oracle applications for a specific hardware platform, you need to
set parameters specific to that platform. Refer to the Oracle installation
documentation for your server for additional information regarding these
parameters.

Installation Choices
The OFSA server instance creation provides a great deal of flexibility. While Oracle
does not require a specific method for creating an Oracle instance, it is

Preparing Your Server for Installation

6-2 Oracle Financial Services Installation and Configuration Guide

recommended that you follow the guidelines for installing and creating an OFSA
Oracle instance as described in the Oracle Optimal Flexible Architecture standard
document. The standard is designed to enhance ease of maintenance. It also reduces
potential ambiguities by utilizing structured naming conventions.

There are many choices to be made, even within the standard, such as (but not
limited to):

■ Raw Devices versus File Systems

■ Striped Disk Devices versus Concatenated Disk Devices

■ ASYNC I/O versus Multiple DB Writers

It is recommended that you carefully consider the consequences of selecting certain
options before deciding on how you want to create an instance on the OFSA server.
Generally the options you need to balance are speed of operation versus ease of use
and maintenance. Read Chapter 16, "FDM Object Management" and Chapter 18,
"FDM Database Performance Management" before you make a decision will help
you to understand these considerations.

Prior to Installation
Before you install the server-centric applications, review the storage requirements
for each application and the permissions that will be necessary.

Storage Requirements
The following table lists the OFSA storage requirements by platform:

Workspace storage is calculated based upon one active Request Queue (there is
always one Request Queue per database instance). The workspace calculation

Category Sun HP AIX Compaq

Applications 80 MB 85 MB 50 MB 85 MB

Database Scripts 20 MB 20 MB 20 MB 20 MB

Workspace1

1 Default value for workspace based on one instance of Request Queue and one
database instance

25 MB 25 MB 25 MB 25 MB

Total 125 MB 130 MB 100 MB 130 MB

Installing the OFSA Server-Centric Application

UNIX Server Installation and Configuration 6-3

further assumes that the Request Queue’s maximum logfile control parameters are
set to default (MaxFileSize = 512kb, IdealFileSize = 256kb). See Chapter 20, "Request
Queue" for more information about these default settings.

The suggested formula for calculating the required workspace is as follows:

workspace = (number of Request Queues) * (20 Mb + (2 * max. logfile size))

Required User and Group
Before installing the applications and if they do not already exist, create the user
ofsa and the group ofsadba.

Installing the OFSA Server-Centric Application
This section provides instructions on installing the OFSA server-centric
applications. The servers included in this section have been certified for this release.
See Chapter 3, "Certifications" for additional information on certified servers.

Installation routines are provided for the following servers:

■ Sun

■ Hewlett Packard

■ IBM-AIX

■ Compaq

Installing OFSA on Sun Servers
Sun servers use the pkgadd command to install software packages. Complete the
following steps to install the OFSA server-centric applications on these servers.

1. Log in as the root user.

2. Insert the CD-ROM into the CD-ROM drive.

3. Mount the CD-ROM to a UNIX mount point. An example of this command
follows:

Note: In this chapter, OFSA_INSTALL is the convention used to
indicate where OFSA is installed in your directory structure. Also,
all references to owner are to the UNIX account that will own all of
the software files.

Installing the OFSA Server-Centric Application

6-4 Oracle Financial Services Installation and Configuration Guide

mount /dev/dsk/c2t2d0 /cdrom

4. If you want to keep a previously installed OFSA version, you may need to
create an alternate admin file. This will be required if a prompt appears asking
which version of OFSA to overwrite.

5. If you want to remove a previously installed OFSA version, refer to the
platform-specific system administration documentation for details on how to
remove a package.

6. In UNIX, change the directory to where the CD-ROM is mounted. An example
of this command follows:

cd /cdrom

7. In UNIX, change the directory to the appropriate platform by typing the
following command.

cd server/<server name>

8. Install the package by typing the following command. Note that the package
name is case sensitive.

pkgadd -d ‘pwd‘ ORCLofsa

Caution: Pkgadd will not operate properly if you do not create an
alternate admin file when this prompt appears.

See the section entitled "Installing Multiple Versions of OFSA on
Sun" for instructions on keeping previous OFSA versions.

Caution: When removing packages (pkgrm), be careful not to
remove packages in addition to the OFSA server-centric
applications. This can occur when you invoke a package remove
statement. Refer to your UNIX documentation so that you remove
only the OFSA group of applications.

Installing the OFSA Server-Centric Application

UNIX Server Installation and Configuration 6-5

The package begins installing the server-centric applications, displaying these
prompts:

a. The following prompt appears:

Install ofsa where? (default: /db/d00/ofsa)

Click Enter to accept the default directory or type a new installation
directory and click Enter.

b. The following prompt appears:

Install applications (a), scripts (s), BP web client (b), or full
package (default: f)?

specify one of the options (default: f)? [ascbf]

Select a full installation (f) by clicking Enter.

c. The following prompt appears:

Before installing OFSA Web Applications, you need to have installed
a web server on this machine.

Do you have a web server installed on this machine? [y,n,?,q]

The Budgeting & Planning web client (Oracle Budgeting & Planning)
requires a web server on the machine. If you select No at this prompt, the
installation continues and displays the following message:

Removing bpweb from the install and continuing if other categories were
selected.

d. If you designate Yes for having a web server installed on the machine, the
following prompt appears:

Where should web application files be installed?

(specify a directory in the web servers document tree where the BPweb
files may be copied. This will create a directory there called bpweb)

Write permission to that directory for is required (default:
/usr/etc/httpd/docs/ofsa)

Note: If you do not type a package name and click Enter, a list
appears with package choices. Select the appropriate package name
and click Enter.

Installing the OFSA Server-Centric Application

6-6 Oracle Financial Services Installation and Configuration Guide

Designate the appropriate directory and click Enter to continue.

e. The following prompt appears:

Owner for ofsa files? (default: ofsa)

All files and directories created by the pkgadd command are assigned to the
owner specified in this step.

Click Enter to accept the default owner or type a new owner name and click
Enter.

f. The following prompt appears:

What group should the installed files belong to? (default: ofsadba)

All files and directories created by the pkgadd command are assigned to the
group specified in this step.

Click Enter to accept the default group or type a new group name and click
Enter.

9. After the installation is complete, a message similar to the following message
appears:

Installation of <ORCLofsa> was successful

This message indicates that you have successfully installed the OFSA server-centric
applications on your server and that the installation process has created the
following directories in the installation directory:

Installation of Budgeting & Planning Web Server Components
There are no additional steps required for installing the Budgeting & Planning Web
Server Components on a Sun server. The pkgadd command automatically installs

Directory OFSA Application Description

../etc .INI and other miscellaneous files

../bin Executables

../lib Shared libraries

../log Empty directory (Request Queue workspace)

../dbs Database change and create scripts

../mm Market Manager

Installing the OFSA Server-Centric Application

UNIX Server Installation and Configuration 6-7

the required components when you install the Budgeting & Planning Web Server in
step 8.

Installing Multiple Versions of OFSA on Sun
Multiple versions of the OFSA applications can be installed on the same server.
However, each version needs to be installed in a different directory. Create these
directories when you are installing the current OFSA package.

This is done by creating an admin file and including the -a option in pkgadd. The
steps for creating the admin file follow.

Although you cannot install the same version of the application on a server more
than once, you can simultaneously install and run the same general release version
of the application if each version has a different patch. For example, you can run
Release 4.5 maintenance patch 02 and Release 4.5 maintenance patch 03 on the same
server.

To create an admin file that enables you to install multiple versions of OFSA
complete the following steps.

1. Log in as the root user.

2. In UNIX, change the directory to /var/sadm/install/admin by typing the
following command:

cd /var/sadm/install/admin

3. Type the following command.

sed s/instance=.*/instance=unique/ default > ofsa

Note: If you do not install Budgeting & Planning Web Server on
initial install of OFSA but afterwards want to install it on your Sun
server, follow the instructions described in the Installation of
Budgeting & Planning Web Server Components sub-section of the
Installing OFSA on a Hewlett Packard Server. The instructions for
adding Budgeting & Planning Web Server to an existing OFSA
installation for Sun are the same as installing Budgeting & Planning
Web Server on a Hewlett Packard server.

Caution: You cannot install the same version of the OFSA
server-centric application on your server more than one time.

Installing the OFSA Server-Centric Application

6-8 Oracle Financial Services Installation and Configuration Guide

The admin file that enables you to install multiple versions of OFSA is now
created.

4. Type the -a option to pkgadd to include the admin file in the installation
command. An example of this command follows:

pkgadd -d ‘pwd‘ -a ofsa

Installing OFSA on a Hewlett Packard Server
Hewlett Packard (HP) servers use the swinstall program to install software
packages. The swinstall program runs on several terminal types including character
based (vt type) and X Windows (GUI). Both provide a command-line based
mechanism to install the software.

The command-line based installation mechanism is documented in this section. See
the appropriate HP system administration documentation if you plan to use the
character based mechanism or GUI.

Complete the following steps to install the OFSA server-centric applications on
your HP server.

1. Log in as the root user.

2. Create the following directory:

/cdrom

3. Insert the CD-ROM into the CD-ROM drive.

4. Check the file /etc/pfs_fstab for the following entry (replacing the device name
where appropriate):

/dev/dsk/c3t2d0 /cdrom pfs-rrip xlat=unix 0 0

5. Install and run the following daemons by typing these commands:

nohup /usr/sbin/pfs_mountd &
nohup /usr/sbin/pfsd &

Note: Once you create the admin file, you do not need to recreate
it every time you install this release of the OFSA server-centric
applications.

Installing the OFSA Server-Centric Application

UNIX Server Installation and Configuration 6-9

6. Mount the CD-ROM by typing the following command:

/usr/sbin/pfs_mount /cdrom

7. Define a UNIX account and group for the OFSA applications. HP requires that
both the account and group be defined before running the installation process.
The following options are available in defining your UNIX account and group.

■ If you have installed a previous version of OFSA applications and you want
to keep this version on your server then the account and group set up in the
default directory (default /db/d00/ofsa)is used for the installation.

■ If you are not keeping a previous version of the application or you are
installing the OFSA application for the first time, you have the option of
either using the default UNIX account, which is ofsa, and the default UNIX
group, which is ofsadba, or creating a UNIX account and group that follows
your organization’s naming conventions.

If you create your own UNIX account and group then you also need to
either create the following directory, default /db/d00/ofsa, or create
your own directory and pass that directory name to the swinstall command.
The installation process looks to this directory for the account and group
that will be used for the OFSA group of applications.

8. If you want to keep a previously installed OFSA version you must specify the
following switch to the swinstall command:

-x allow_multiple_versions=true

9. If you want to remove a previously installed OFSA version refer to the HP
system administration documentation for further information on removing a
package.

Note: Once these daemons have been installed you do not need to run
them again to mount a CD-ROM.

Caution: If you do not create the UNIX account and UNIX group
before installation, your installation will fail.

Installing the OFSA Server-Centric Application

6-10 Oracle Financial Services Installation and Configuration Guide

10. In UNIX, change the directory to where the CD-ROM is mounted. An example
of this command follows:

cd /cdrom

11. In UNIX, change the directory to the appropriate platform by typing the
following command:

cd server/HP

12. If you are installing the package and not retaining previous versions or do not
have previous versions installed type the following command:

swinstall -s ‘pwd‘ -x mount_all_filesystems=false
OFSA:/db/d00/app/ofsa/ofsa4.5-092-hp

The following portion of this command, :/db/d00/app/ofsa/ofsa4.5-092-hp, is
the installation (OFSA_INSTALL) directory location. If you have chosen a
different location, replace the default location at this point in the command line
with your directory location.

The package begins installing the server-centric application.

13. If you are installing the package and keeping a previous version, type the
following command:

swinstall -s ‘pwd‘ -x allow_multiple_versions=true
-x mount_all_filesystems=false OFSA:/db/d00/app/ofsa/ofsa4.05092-hp

The following portion of this command, :/db/d00/app/ofsa/ofsa4.5-092-hp, is
the installation (OFSA_INSTALL) directory location. If you have chosen a
different location, replace the default location at this point in the command line
with your directory location.

The package begins installing the server-centric application.

14. After the installation is complete, a message similar to the following appears:

Installation of <ORCLofsa> was successful

This message indicates that you have successfully installed the OFSA
server-centric application on your server and that the installation process has
created the following directories in the installation directory:

Directory OFSA Application Description

../etc .INI and other miscellaneous files

Installing the OFSA Server-Centric Application

UNIX Server Installation and Configuration 6-11

When finished, unmount the CD-ROM on the HP UX 11.0 server by typing the
following command:

/user/sbin/pfs_umount /cdrom

Installation of Budgeting & Planning Web Server Components
If you are using Budgeting & Planning, then you need to install the Budgeting &
Planning Web Server components. To do this, complete the following steps:

1. Run the bpweb_setup.sh script:

The default location for the bpweb_setup.sh script is the OFSA_INSTALL
/dbs/<OFSA release>/bpweb subdirectory of your OFSA installation directory.
In this chapter, OFSA_INSTALL is the convention used to indicate where the
OFSA applications are installed in your directory structure.

To run the script, type the following:

./bpweb_setup.sh

2. The script provides the following prompt:

Before installing OFSA Web Applications, you need to have a web server
installed on this machine.

Do you have a web server installed on this machine? (yes or no)

The Budgeting & Planning Web Server components require that a web server is
installed on the machine. If you do not have a web server installed, type no and
click Enter and the installation will terminate. If you do have a web server
installed, type yes and click Enter to continue with the installation.

3. The script then prompts for the location to install the Budgeting & Planning
Web Server components.

Where should web application files be installed?

../bin Executables

../lib Shared libraries

../log Empty directory (Request Queue workspace)

../dbs Database change and create scripts

../mm Market Manager

Directory OFSA Application Description

Installing the OFSA Server-Centric Application

6-12 Oracle Financial Services Installation and Configuration Guide

(Specify a directory in the web servers document tree where the BPweb files
can be copied.

Write permission to that directory for ofsa is required (default:
/usr/etc/httpd/docs/ofsa)

Specify the appropriate location. You must have write permission to the
directory specified.

Installing OFSA on an IBM-AIX and Compaq Alpha Server
To install the OFSA server-centric applications on your IBM-AIX or Compaq Alpha
server complete the following steps.

1. Log in as the root user.

2. Insert the CD-ROM into the CD-ROM drive.

3. Mount the CD-ROM to a UNIX mount point. An example of this command
follows:

mount -v cdrfs -r /dev/cd0 /cdrom

4. Log in as the UNIX account that will own the OFSA server-centric applications.
The default account is ofsa

5. Create the directory to contain the OFSA server-centric applications. An
example of this command follows:

mkdir /db/d00/app/ofsa/ofsa4.5-092-aix

6. In UNIX, change the directory to where the CD-ROM is mounted by typing the
following command:

cd /cdrom

7. In UNIX, change the directory to the appropriate platform by typing the
following command:

cd server/IBM

8. Copy the software package containing the OFSA server-centric applications to
your designated installation directory. An example of this command follows:

cp ofsa4.5-092-aix.tar /db/d00/app/ofsa/ofsa4.5-092-aix/

This process requires 100 MB of temporary space. You can reclaim this space
after you complete the installation process by removing the tar file.

Installing the OFSA Server-Centric Application

UNIX Server Installation and Configuration 6-13

9. In UNIX, change the directory to the OFSA_INSTALL directory. An example of
this command follows:

cd /db/d00/app/ofsa/ofsa4.5-092-aix

10. Extract the package by typing the following tar command with the x (extract) v
(verbose) f (file) options:

tar -xvf ofsa4.5-092-aix.tar

11. To complete the installation, run the postinstall script from the OFSA_INSTALL
directory. For example:

cd /db/d00/app/ofsa/ofsa4.5-092-aix

./postinstall

Installation of Budgeting & Planning Web Server Components
If you are using Budgeting & Planning, then you need to install the Budgeting &
Planning Web Server components. To do this, complete the following steps:

1. Run the bpweb_setup.sh script:

The default location for the bpweb_setup.sh script is the OFSA_INSTALL
/dbs/<OFSA release>/bpweb subdirectory of your OFSA installation directory.
In this chapter, OFSA_INSTALL is the convention used to indicate where the
OFSA applications are installed in your directory structure.

To run the script, type the following:

./bpweb_setup.sh

2. The script provides the following prompt:

Before installing OFSA Web Applications, you need to have a web server
installed on this machine.

Do you have a web server installed on this machine? (yes or no)

The Budgeting & Planning Web Server components require that a web server is
installed on the machine. If you do not have a web server installed, type no and
click Enter and the installation will terminate. If you do have a web server
installed, type yes and click Enter to continue with the installation.

3. The script then prompts for the location to install the Budgeting & Planning
Web Server components.

Where should web application files be installed?

(specify a directory in the web servers document tree where the BPweb files

Installing the OFSA Server-Centric Application

6-14 Oracle Financial Services Installation and Configuration Guide

can be copied.)

Write permission to that directory for ofsa is required (default:
/usr/etc/httpd/docs/ofsa)

Specify the appropriate location. You must have write permission to the directory
specified.

Creating and Locating the OFS.INI File
The installation program creates the ofs.ini file and locates it in the <OFSA_
INSTALL>/etc directory. This file provides a list of datasources available within the
OFSA group of applications and specific data unique to each datasource.

Components of the OFS.INI File
The following table provides an example of an ofs.ini file:

The following table describes the components of the ofs.ini file.

[Oracle_Example]

DriverType = ORACLE

ServerName = DB name

Database = $ORACLE_SID

OFS.INI Component Description

[Oracle_Example] This heading indicates that the information entered pertains to
this datasource only.

This is the name you provide to the server-based applications
when prompted for a database.

DriverType This indicates the database driver to use to connect to the
datasource. This should always be “ORACLE” and is not case
sensitive.

ServerName Type the database alias here. This is the database name that
SQL*Net or NET8 recognize. Refer to Chapter 7, "Client
Software Installation and Configuration" for additional
information on this topic.

If this is blank, the $ORACLE_SID environment variable is used
to make a local connection. If the OFSA applications and
database are installed on the same server, this is the preferred
method.

Configuring OFSA Server-Centric Applications

UNIX Server Installation and Configuration 6-15

The installation program creates a sample ofs.ini file. You can either modify this
sample file or create your own.

Configuring OFSA Server-Centric Applications
This section explains the configuration of OFSA and UNIX kernel parameters. Use
this section as a guide to determine OFSA’s usage of system resources and to
properly configure the kernel and .INI file. It is important to understand the
production processes and normal usage of each OFSA application to properly
configure the server-centric applications.

The following terms are used in this section.

Database Normally the same as ServerName. If ServerName is blank, this
should be the value of the $ORACLE_SID.

Term Definition

Bulk Processing A method of processing using an update statement to do
calculations and update multiple rows.

Common COA leaf –
common_coa_id

A column in the OFSA database.

Process A UNIX process.

Product Leaf The product leaf as specified in the Configuration ID for Transfer
Pricing or Risk Manager. In Balance & Control and Performance
Analyzer the product leaf is common_coa_id.

Org Leaf The organizational leaf as specified in the Configuration ID for
Transfer Pricing or Risk Manager. In Balance & Control and
Performance Analyzer org_unit_id is the organizational leaf in
the OFSA database.

Row by Row Processing A method of processing using a select statement to fetch data,
calculate results using that data and then either write a single
row back to the database or aggregate it into multiple rows.

Semaphore A UNIX resource that exists separate from any process and
provides a mechanism for synchronizing processes and
controlling access.

Shared Memory A UNIX resource that exists separate from any process and
provides a mechanism for processes to share data.

OFS.INI Component Description

Configuring OFSA Server-Centric Applications

6-16 Oracle Financial Services Installation and Configuration Guide

Application .INI Settings
This section describes settings in the application .INI files that affect processing. In
each case, guidelines are presented as how to best determine these settings. In most
cases it is better to have the settings discussed in this section set too large rather
than too small. It is recommended that you set these numbers higher than their
minimum expected value, to accommodate growth.

Once you have installed the OFSA server-centric applications on the appropriate
server, the installed applications need to be configured properly. The following
sections describe specific settings you need to check. The .INI files referenced in
these sections are located in the /.../OFSA_INSTALL/etc directory on the server.
There are similar sets of .INI files on each client machine. Use and configuration of
the client .INI files is discussed in Chapter 7, "Client Software Installation and
Configuration".

Configuring Paths
The following information is required to be in the ofs.ini file. This information
assumes that /db/d00/ofsa is the directory where OFSA is installed.

The OME setting is for the Transformation ID. The last setting, WorkingDirectory,
specifies the directory that Request Queue sets as its current directory. If the

Shared Resource Generally any resource that is shared among multiple processes.
For the purposes of this document, a Shared Resource is
specifically a Semaphore or a Shared Memory Segment.

OFSA Job A run of an OFSA ID. An OFSA job can use one or more
processes.

Unit of Work Each OFSA job divides its required data into units of work
which are then distributed to processes. A unit of work is a set of
rows from the database.

[OFSRQ]

BC
RQTEST
PRW
TPW
TMW
OME
WorkingDirectory

= /db/d00/ofsa/bin/ofsbc
= /db/d00/ofsa/bin/ofstest
= /db/d00/ofsa/bin/ofspa
= /db/d00/ofsa/bin/ofstp
= /db/d00/ofsa/bin/ofsrm
= /db/d00/ofsa/bin/ofste
= /db/d00/ofsa/log

Term Definition

Configuring OFSA Server-Centric Applications

UNIX Server Installation and Configuration 6-17

standard procedure is followed, this is the /db/d00/ofsa/log directory. This setting
defines the location of all log files and Request Queue output.

Ledger_Stat Buffer Size
This section applies to all users of Performance Analyzer and users of Transfer
Pricing that select the Ledger_Stat option. This setting affects performance. Setting
it too small can result in significant degradation in performance while setting it too
large uses an excessive amount of system memory.

By default the buffer is set at 2,000 elements.

Calculating the Optimal Setting

The easiest way to determine the optimal setting for these numbers is to first do a
full processing run, then execute the application-specific statements. Setting the size
larger has no effect on performance, however, the buffer size should be set larger
than these values to provide for future growth. Replace <current_year> with the
appropriate value.

Performance Analyzer SQL Statements

For Performance Analyzer execute the following statement on Oracle:

select max(count(*)) from ledger_stat where identity_code in (select
distinct identity_code from ofsa_catalog_of_ids, ofsa_data_identity where
to_char(ofsa_catalog_of_ids.sys_id_num)=ofsa_data_identity.description and
ofsa_catalog_of_ids.id_type=0) and year_s = <current_year> group by
identity_code;

Transfer Pricing SQL Statements

If Ledger_Stat is being used for Transfer Pricing execute the following statement on
Oracle:

select max(count(*)) from ledger_stat where identity_code in (select
distinct identity_code from ofsa_catalog_of_ids, ofsa_data_identity where
to_char(ofsa_catalog_of_ids.sys_id_num)=ofsa_data_identity.description and
ofsa_catalog_of_ids.id_type=204) and year_s = <current_year> group by
identity_code;

Changing the .INI Setting

The .INI setting for Performance Analyzer is located in the ofspa.ini file. For
Transfer Pricing, it is in the ofstp.ini file. The entry is as follows (shown with
default setting):

Configuring OFSA Server-Centric Applications

6-18 Oracle Financial Services Installation and Configuration Guide

[Ledger_Stat]
BufSize = 2000

Transfer Pricing Migration Buffer Size
This section applies only if your organization is using Transfer Pricing for transfer
pricing Ledger_Stat and migration of detail rates to Ledger_Stat. Establishing this
setting larger than necessary will have no affect on performance. Establishing it
smaller than necessary will result in an error message from Transfer Pricing that it
has run out of space.

Determining the Necessary Space for Migration

Perform the following steps calculate the amount of space needed for migration.

1. Determine the detail tables that will have transfer pricing results migrated to
Ledger_Stat.

2. Determine the number of unique org/common/application combinations in
each table. In some instances, the common and application dimensions can be
the same.

3. Determine the number of org/common/application combinations in Ledger_
Stat for financial element 140 that do not exist in any detail tables.

4. The sum of the values from steps 2 and 3 is the total migration buffer size
required. SegCount * SegSize should be greater than this number to provide for
future growth.

SegCount and SegSize

The migration buffer operates by allocating a shared memory segment of size 108 *
SegSize bytes. When the segment fills with data, it will allocate an additional
segment of that size until SegCount segments have been allocated. If the application
attempts to place additional data into the migration buffer, an error condition
occurs and no more data is placed in the buffer.

Determining how large to make SegCount and how small to make SegSize depends
on how you are using Transfer Pricing. If Transfer Pricing uses a single process to
do all migration, set SegCount to 1 and SegSize to the number calculated in step 4.
In the event that smaller migration runs are also performed, it may be desirable to
set SegSize to some fraction of the size and set SegCount to an appropriate value.
SegCount can be no greater than three less than the maximum number of shared
memory segments that can be attached to a process. In general, SegCount should
probably never be greater than 10.

Configuring OFSA Server-Centric Applications

UNIX Server Installation and Configuration 6-19

Changing the .INI Setting

The .INI setting for Transfer Pricing is located in the ofstp.ini file. The entry is as
follows (shown with defaults):

[Migration]
SegSize = 10000
SegCount = 5

Upsert Method
The Upsert Method parameter controls how updates and inserts are applied to the
LEDGER_STAT table for Performance Analyzer allocation processing.

Previously, Performance Analyzer executed all allocation updates and inserts
directly on the LEDGER_STAT table as the input data was processed. OFSA 4.5 now
automatically uses temporary tables to store output from the process if an allocation
satisfies all of the following conditions:

■ The Allocation ID filters on the LEDGER_STAT table OR calculates Percentage
Distribution based on the LEDGER_STAT table.

■ The Allocation ID Debits or Credits to the LEDGER_STAT table.

You can use the temporary tables to store output for other types of allocations that
output to the LEDGER_STAT table by specifying the Upsert Method globally in the
ofspa.ini file on the server.

Specify the Upsert Method in the ofspa.ini file as follows:

[LEDGER_STAT]
UpsertMethod=2;

Where 0 means never use temporary tables for allocations other than the kind that
satisfies the conditions already described, 1 means always use temporary tables and
2 (or greater) means the same as 0.

Shared Memory .INI Setting
This section provides the information necessary to calculate the approximate
amount of shared memory needed by Risk Manager, based on the nature of the IDs
you are running. The default shared memory setting is 16MB, which is the
suggested minimum shared memory setting. However, the memory setting for your
institution is determined by the formulas in this section and can be greater or lesser
than the default setting.

Configuring OFSA Server-Centric Applications

6-20 Oracle Financial Services Installation and Configuration Guide

The implementation of Risk Manager allocates memory in blocks that are powers of
two and rounds the shared memory setting up to the next power of two.

Calculating the Shared Memory Usage
To calculate the minimum required size of this setting, you need the following
information.

Scenario-based Run

The formula for calculating the minimum size of the shared memory segment for a
scenario-based run is:

(NUMROLLINTO + 4 * NUMPROCS) *
(8 * NUMBUCK * NUMFINELEM * NUMSCEN +
8 * NUMGSDATES * 10 * NUMBUCK * NUMSCEN
)+
16 * NUMORGPROD +
NUMROLLINTO * NUMBUCK * (NUMSCEN * 225 + 32)

Component Descriptions

NUMBUCK Number of Static Buckets

NUMEVENTS Maximum number of events (such as repricing or payments)
generated for an instrument record

NUMFINELEM Number of financial elements generated in a run

NUMGBUCK Number of Gap Buckets

NUMGSDATES Number of Gap Start Dates

NUMORG Number of organizational unit leaves

NUMORGPROD Number of unique combinations of ORG and PROD in all processed
instrument tables

NUMPROCS The NumProcesses setting from the ofsrm.ini file

NUMPROD Number of product leaves used in a run

NUMSCEN Number of Scenarios

NUMSDATES Number of Start Dates

NUMROLLINTO Number of RollInto leaves

NUMUNITS The number of units of work to be processed

Configuring OFSA Server-Centric Applications

UNIX Server Installation and Configuration 6-21

if autobalancing:

+ 25 * 8 * NUMSCEN * NUMBUCK

Stochastic-based Run

The formulas for calculating the minimum size of the shared memory segment for
the stochastic runs are listed, showing the formula combinations for different run
scenarios:

The basic stochastic-run formula is as follows:

1200 * 2 * NUMPROCS +
16 * NUMORGPROD +

if Market Value only run (formula A):

+ 2 * NUMPROCS * 50

if Value at Risk (VAR) run (formula B):

+ 2 * NUMPROCS * (50 + 8 * (NUMSCEN + 1))

if Earnings run:

+ NUMROLLINTO * NUMBUCK * (NUMSCEN * 225 + 32) +
NUMBUCK * NUMSCEN * 20 * 8

if Portfolio Earnings is on:

+ 16 * NUMORGPROD +
+ 16 * NUMBUCK * (1 + NUMSCEN)

if Autobalancing is on:

+ 25 * 8 * NUMSCEN * NUMBUCK

if Earnings is combined with Market Value only:

+ Formula A

Determining Shared Resource Requirements

6-22 Oracle Financial Services Installation and Configuration Guide

if Earnings is combined with VAR:

+ Formula B

Changing the .INI Setting
The .INI setting for Risk Manager is located in the ofsrm.ini file. The entry is as
follows (shown with defaults):

[Parallel]
SharedMemory = 16384

The size is in kilobytes.

Determining Shared Resource Requirements
This section describes the use of Semaphores and Shared Memory Segments by
application type. In each case, the shared resources are only used while the
application is running. Using the following information and knowing how OFSA is
run, you can determine the total system resources that need to be available at a
given time. Shared memory segments of minimum size are defined as being less
than 100KB.

Application
Shared
Memory Shared Memory Sizes Semaphores

Balance & Control None 0

Performance Analyzer 2 1: Minimal

1: 280 * BufSize1

5

Risk Manager
(Scenario-based run)

2 1: 1K

1: SharedMemory#

4 * NumProcesses#+
NUMROLLINTO +
9

Risk Manager (Stochastic run) 3 1: 1K

1: SharedMemory#

6

Transfer Pricing (No Ledger) 0 0

Transfer Pricing (with
Ledger_Stat migration)

3 +
SegCount#

2: Minimal

1: 280 *
BufSize#SegCount#: 108 *
SegSize#

10

Adjusting UNIX Kernel Parameters

UNIX Server Installation and Configuration 6-23

The NumTables variable is the number of Instrument tables processed in the job.

The NumProcesses variable is the number of processes value for the job for more
information).

The variables in Shared Memory, Shared Memory Sizes and Semaphores identified
by the pound symbol (#) are found in the application-specific .INI file. They are
described in greater detail in the following table.

Adjusting UNIX Kernel Parameters
This section describes the UNIX kernel parameters that may need to be adjusted to
run the OFSA group of applications. Refer to the UNIX documentation to find out
how to change these parameters as well as additional information on their
meanings.

The parameters listed here are directly related to multiprocessing issues. In rare
cases, other parameters may also need to be adjusted for OFSA to operate properly.

Transfer Pricing (Option Cost
- Historical)

2 1: 5.7MB

2: 1088 + 640 *
NumTables + (384 *
NumTables + 72) *
NumProcesses

2 + NumProcesses

Transfer Pricing (Option Cost
- Remaining Term)

1 5.7MB 1

Transformation 0 <blank> 0
1 See the following table for additional information.

Variable .INI File Section Description

BufSize Ledger_Stat Size of Ledger_Stat buffer

SharedMemory Parallel Size of Risk Manager shared memory Seg. If this is
not a power of two, use the next higher power of two
for calculations involving this variable.

SegCount Migration Segments to use for Ledger_Stat migration

SegSize Migration Size of each Ledger_Stat migration segment

Application
Shared
Memory Shared Memory Sizes Semaphores

Adjusting UNIX Kernel Parameters

6-24 Oracle Financial Services Installation and Configuration Guide

Effect of Changing Kernel Parameters
Kernel parameter settings can affect performance. If they are set too small, the
OFSA group of applications will not work. However, if they are set unreasonably
large (for example, all parameters are set to the maximum value), your system’s
resources can be jeopardized. In general, do not use kernel parameter setting as the
primary method of tuning the performance of your server.

Parameters Affecting System-wide Resources
The parameters listed in this section control the total number of semaphores and
shared memory segments allowed to exist at any given time in the system. If any of
these parameters has excessive values, the kernel may use an inordinate amount of
memory. Parameter settings that are too small limit the total number of OFS
applications that can be running at any point in time.

Parameters in this section may also be affected by the requirements of third party
applications and the database backend. You should take these variables into account
when determining the appropriate values.

Shmmni (HPUX, Compaq), shmsys:shminfo_shmmni (Sun)
The number of shared memory segments allowed to exist in the system at a given
time. For OFSA, this number should be equal to the maximum number of shared
memory segments that may be extant at a given moment in time.

Semmni (HPUX, Compaq), semsys:seminfo_semmni (Sun)
The maximum number of semaphore identifiers allowed in the system at a given
time. For OFSA, this number should be equal to the maximum number of
semaphores that are needed concurrently.

Note: The IBM AIX O/S dynamically allocates the semaphore,
shared memory and other process resource kernel parameters,
based on the process and system requirements. Because these
parameters for IBM AIX are not directly specified by the
administrator, they are not listed in this section.

Adjusting UNIX Kernel Parameters

UNIX Server Installation and Configuration 6-25

Semmns (HPUX), semsys:seminfo_semmns (Sun)
The maximum number of semaphore sets permitted. For OFSA, this should be at
least the value of SEMMNI (OFSA uses one semaphore per set).

Nproc (HPUX, Compaq), max_nprocs (Sun)
Total maximum processes allowed in the system. A value of at least 1024 is
recommended.

Maxuprc (HPUX, Sun, Compaq)
Total maximum processes allowed per user in the system. A value of at least 256 is
recommended.

Parameters Affecting Per-process Resources
The parameters listed in this section affect the number of resources available to a
single UNIX process. In general, they are set below the maximum value to prevent a
single process from using an excessive amount of memory. In many situations it is
acceptable to set these to their maximum legal values.

Parameters in this section may also be affected by the requirements of third party
applications and the database. You should take these variables into account when
determining the appropriate values.

Refer to the operating system documentation for a detailed description of the
following parameters.

SVMMLIM
This parameter should be set to the maximum allowable value, usually 0x7FFFFFFF.

HDATLIM
This parameter controls the amount of memory a UNIX process can address.

The setting should be 32MB plus the size of the Risk Manager shared memory
segment. Oracle installations frequently have these set to the maximum.

Shmseg (HPUX, Compaq), shmsys:shminfo_shmseg (Sun)
This parameter controls the maximum number of shared memory segments that can
be used by a process.

Determining Application-Specific Memory Requirements

6-26 Oracle Financial Services Installation and Configuration Guide

Shmmax (HPUX, Compaq), shmsys:shminfo_shmmax (Sun)
This parameter controls the maximum size of a shared memory segment (in bytes).

Shmsys:shminfo_shmmin (Sun)
This parameter sets the minimum size of a shared memory segment. OFSA assumes
it can allocate a shared memory segment as small as 1024 bytes. If you set this
parameter to anything larger than 1024 bytes OFSA will not function properly.

Determining Application-Specific Memory Requirements
This section provides a set of formulas to estimate the memory requirements of the
OFSA group of applications.

Total Memory Requirements for the OFSA Group of Applications
Use the following formula to calculate the total memory requirements of the OFSA
group of applications:

The following sections provide detailed information on calculating the parameters
included in this formula.

Memory Requirements for Balance & Control
The Balance & Control memory requirements consist of the size of the program. The
data memory requirements are negligible and are included in the size of the
program.

+ Database memory requirements (determined after tuning your system)

+ Balance & Control memory requirements * the number of concurrent
Balance & Control processes

+ Performance Analyzer memory requirements * the number of concurrent
Performance Analyzer processes

+ Risk Manager memory requirements * the number of concurrent Risk
Manager processes

+ Transfer Pricing memory requirements * the number of concurrent
Transfer Pricing processes

+ Transformation Engine
= Total memory required for OFSA

Determining Application-Specific Memory Requirements

UNIX Server Installation and Configuration 6-27

Memory Requirements for Performance Analyzer
Refer to the 4.5 Product Release Notes for Performance Analyzer memory
requirements.

Memory Requirements for Transfer Pricing
Use the following formula to find the total memory required for Transfer Pricing:

The following formulas pertain to the three memory intensive IDs and the cash flow
engine (used when a cash flow method is selected). Other IDs are used within
Transfer Pricing, however, these memory requirements are negligible. The
Prepayment ID and Cash Flow structures may or may not be used with every
Transfer Pricing ID.

Transfer Pricing ID
Calculate the memory requirements for the Transfer Pricing ID using the following
formula:

(n leaves * record_length)

where

record_length = 72 unpaired accounts methodology

and

record_length = 86 priced accounts methodology

+ The size of the program

+ Transfer Pricing ID

+ Prepayment ID

+ Historical Rates ID

+ Cash Flow Processing structures

+ Ledger_Stat buffer size

+ Monte Carlo Rate Generator

+ The size of the data migration array
= Total memory required for Transfer Pricing

Determining Application-Specific Memory Requirements

6-28 Oracle Financial Services Installation and Configuration Guide

Prepayment ID
Calculate the memory requirements for the Prepayment ID using the following
formula:

(n leaves * y tiers per leaf * record_length)

where

record_length = 58

Historical Rates ID
Calculate the memory requirements for the Historical Rates ID using the following
formula:

2 * (n IRCs * d Dates points * (t Term Points * 8 + 32))

Cash Flow Processing Structures
The memory used by the cash flow calculations equals the product of the number of
cash flow events (payment, repricing, maturity, and so forth), the number of
financial elements and the size of the data structure where the information from
each row will be stored.

Use the following formula to calculate the memory required for the cash flow
calculations:

(n events * e financial elements * record_length)

where

record_length = 408

number of financial elements = 5 for normal processing runs and 8 for
processing runs which have the detailed cash flows audit option activated

Note: This size differs between those account methodologies that
are priced and those that are unpaired.

Note: The maximum number of structures (events * financial
elements) that can be modeled is 16,000.

Determining Application-Specific Memory Requirements

UNIX Server Installation and Configuration 6-29

Option Cost Calculations
Option Cost calculations use additional cash flow structures to calculate the
required memory. When running these, multiply the results of the previous formula
by number of scenarios +1.

Ledger_Stat Buffer Size
To find the Ledger_Stat buffer size, multiply the BufSize setting in the ofstp.ini file
under the [Ledger_Stat] section by 272.

Monte Carlo Rate Generator
The Monte Carlo Rate Generator uses two chunks of memory. One is required for
low discrepancy runs and is allocated in shared memory for multiprocessing runs
and in the conventional memory for single process runs. The size required is
~5.7MB in both cases. Another chunk is always allocated in conventional memory
and its size in bytes is 5782 * number of scenarios.

Size of Data Migration Array
To find the total size of the migration buffer array, multiply the SegSize setting in
the ofstp.ini file under the [Migration] section by 108.

Memory Requirements for Risk Manager
The following formula calculates the memory requirements for Risk Manager:

The memory requirements for the specific IDs used in Risk Manager are described
in the following list. IDs with negligible memory requirements are not included in
this list.

+ Shared memory

+ Memory used by IDs selected in the Processing ID

+ 10,000,000 for scenario-based runs

or

+
16,000,000 + s scenarios * 5,800 for Stochastic runs) *
NUMPROCS + NUMSCEN * NUMEVENTS * 20 * 8

= Total memory required for Risk Manager

Determining Application-Specific Memory Requirements

6-30 Oracle Financial Services Installation and Configuration Guide

Prepayment ID
Calculate the memory requirements for the Prepayment ID using the following
formula:

(n leaves * y tiers per leaf * record_length)

where

record_length = 58

Discount Rate ID
Calculate the memory requirements for the Discount Rate ID using the following
formula:

(n leaves * record_length)

where

record_length = 56

Forecast Balance ID
Calculate the memory requirements for the Forecast Balance ID using the following
formula:

(n leaves * b buckets ranges * r rate levels * record_length1) + r rollinto
leaves * c contributing leaves * b buckets (average) * record_length2)

where

record_length1 = 36
record_length2 = 40

Maturity Strategy ID
Calculate the memory requirements for the Maturity Strategy ID using the
following formula:

(n leaves * b buckets * record_length)

where

record_length = 24

Pricing Margin ID
Calculate the memory requirements for the Pricing Margin ID using the following
formula:

Determining Application-Specific Memory Requirements

UNIX Server Installation and Configuration 6-31

(n leaves * record_length)

where

record_length = 48

Transaction Strategy ID
Calculate the memory requirements for the Transaction Strategy ID using the
following formula:

(n leaves * record_length * r records per leaf (average))

where

record_length = 800

Leaf Characteristics ID
Calculate the memory requirements for the Leaf Characteristics ID using the
following formula:

(n leaves * record_length)

where

record_length = 800

Formula Leaves ID
Calculate the memory requirements for the Formula Leaves ID using the following
formula:

(n leaves * b buckets * f number of formulas per leaf (average) * 1024)

Forecast Rates ID
Calculate the memory requirements for the Forecast Rates ID using the following
formula:

2 * (n IRCs * s scenarios * b buckets * (t terms (average) * 8 + 32)

Memory Requirements for the Transformation Engine
The following formulas calculate the memory requirements for Budgeting &
Planning transformation, Ledger transformation, and Risk Manager transformation.

Configuring the Request Queue Log File

6-32 Oracle Financial Services Installation and Configuration Guide

Ledger Transformation
The memory requirements for the Ledger transformation follow.

Risk Manager Transformation
The memory requirements for the Risk Manager transformation follow.

Configuring the Request Queue Log File
The following two settings are associated with configuring the Request Queue (RQ)
log file.

+ 14,580K

+ NumProcesses * (15,490K)

= Total memory required for the Transformation engine for Ledger

+ 19,800K

+ NumProcesses * (19,820K)

= Total memory required for the Transformation engine for Risk
Manager

Setting Description

MaxFileSize This setting specifies the maximum allowable size of the
RQ log file. The maximum file size is equal to this value
multiplied by 1024 (the number of 1024 byte blocks). The
default setting is 512. A setting of 0 (zero) enables the file
to grow without limits.

IdealFileSize This setting specifies the ideal size for the RQ log file. The
maximum file size is equal to this value multiplied by
1024 (the number of 1024 byte blocks). When the log file
reaches maximum size, the data contained in the log file is
flushed out until the ideal file size is reached. The default
setting is 256.

Configuring the Request Queue Log File

UNIX Server Installation and Configuration 6-33

The following sections discuss the environment variable settings for the RQ log file
for each of the servers included in this chapter.

Sun Environment Variables
The rq command script sets the following environment variables for Sun servers.

HP-UX Environment Variables
The rq command script sets the following environment variables for HP- UX
servers.

Variable Description

LD_LIBRARY_PATH This is the path used to find shared object libraries. During the
initialization phase of a process startup, the shared object
libraries are dynamically linked into the process.

INIPATH This is the path to the initialization files and other files read by
OFSA executables. The path is set to the /OFSA_INSTALL/etc
directory under the OFSA installation directory.

NLSPATH Contains the path to search for the OFSA message catalogs. In
addition to what is already defined for the system, it should
include OFSA_INSTALL/etc/nls/msg/%L/%N:OFSA_INSTALL
/etc/nls/msg/C/%N where OFSA_INSTALL is the installation
directory for the OFSA group of applications. This path causes it
to search the current language, then to search the default C
locale, which is identical to the en_US locale.

LANG Should be set to the desired language. C and en_US (U.S.
English) are currently supported.

Variable Description

SHLIB_PATH This is the path used to find shared libraries. During the
initialization phase of a process startup, the shared libraries are
dynamically linked into the process.

INIPATH This is the path to the initialization files and other files read by
OFSA executables. The path is set to the /.../OFSA_
INSTALL/etc directory.

Configuring the Request Queue Log File

6-34 Oracle Financial Services Installation and Configuration Guide

IBM-AIX Environment Variables
The rq command script sets the following environment variables for IBM servers
running AIX:

The following table lists and describes each of these variables.

NLSPATH Contains the path to search for the OFSA message catalogs. In
addition to what is already defined for the system, it should
include OFSA_INSTALL/etc/nls/msg/%L/%N:OFSA_INSTALL
/etc/nls/msg/C/%N where OFSA_INSTALL is the installation
directory for the OFSA group of applications. This path causes it
to search the current language, then to search the default C
locale, which is identical to the en_US locale.

LANG Should be set to the desired language. C and en_US (U.S.
English) are currently supported.

Variable Description

LIBPATH This is the path used to find shared libraries. During the
initialization phase of a process startup, the shared libraries are
dynamically linked into the process.

INIPATH This is the path to the initialization files and other files read by
OFSA executables. The path is set to the /.../ofsa/etc directory.

NLSPATH Contains the path to search for the OFSA message catalogs. In
addition to what is already defined for the system, it should
include: OFSA_INSTALL/etc/nls/msg/%L/%N:OFSA_
INSTALL /etc/nls/msg/C/%N where OFSA_INSTALL is the
installation directory for the OFSA group of applications. This
path causes it to search the current language, then to search the
default C locale, which is identical to the en_US locale.

LANG Should be set to the desired language. C and en_US (U.S.
English) are currently supported.

Variable Description

Other Configuration Issues

UNIX Server Installation and Configuration 6-35

Other Configuration Issues
This section discusses the following, additional configuration issues:

■ Capturing SQL for database optimization

■ Core files in Request Queue

■ Cleaning shared resources

■ Running multiple software instances

Capturing SQL for Database Optimization
This section describes how the SQL that OFSA uses for processing can be captured
for database optimization.

.INI [debug] Section of the Application-specific .INI Files
The following table provides useful values for the various output logs that you can
define in the [debug] section of the application-specific .INI files.

Setting any of the log levels to 0 [zero] turns off output for the given log.

Caution: Careless use of this facility can result in the use of a large
amount of disk space and performance degradation because of the
logging of extraneous information.

Item Value Meaning

FILENAME name Name of log file, saved as <FileName>.<job_number>.log.

CALC_LOG 1 Shows significant calculation SQL in log file.

2 Shows units of work as processed in log file in addition to
significant calculation SQL.

ERROR_LOG 1 Places error output in log file.

3 In addition to OFSA error output, includes the errno of
failed system calls in the log file. This is useful for
diagnosing kernel parameter issues involving semaphores
and shared memory segments.

ACCESS_LOG 2 Shows all SQL.

Other Configuration Issues

6-36 Oracle Financial Services Installation and Configuration Guide

To view meaningful SQL for database optimization, set CALC_LOG to a value of 1.

Core Files
Occasionally core files from OFSA processes end up in the RQ working directory
(usually OFSA_INSTALL_dir/log where OFSA_INSTALL_dir is the installation
location of OFSA) due to situations that are beyond the control of the application,
such as running out of system resources. These files are named either core.<job_
number> or core.<job_number>.<process_number> where <job_number> is the job
number assigned to the process by OFSA and <process_number> is a subprocess
number assigned by OFSA.

If the file name is core.<job_number> the primary process has dumped core. If the
file name is core.<job_number>.<process_number> both multiprocessing and
subprocesses have dumped core. In either case the core is reported in the RQ log
file.

In the event that two OFSA processes dump core simultaneously, the core file may
not correspond to the process as reported in RQ.

Generally, you can delete core files. However, in some instances, when a Technical
Analyst in Oracle Support Services cannot reproduce the problem, you may be
requested to send the core file to Oracle Support Services.

Cleaning Shared Resources
When an OFSA process using shared memory abnormally terminates, the shared
memory and semaphores that it was using will not be cleaned up correctly and will
persist until either the server is rebooted or you clean up the resources. Shared

Caution: Turning on the logging functionality in the ofs.ini file
results in RQ outputting log information. If RQ is left running for
any significant length of time with logging enabled, the log files can
grow quite large. This is different from the log file enabled on the
command line.

Oracle does not warrant that the SQL used by OFSA will remain
consistent across releases, including incremental versions of the
same release. Also, the SQL generated by OFSA may change, based
upon user modifications to IDs and differences in instrument data
from time period to time period.

Other Configuration Issues

UNIX Server Installation and Configuration 6-37

resources can be cleaned up by running the rmipc command located in the bin
directory under the OFSA_INSTALL directory.

Note the following precautions before you run the rmipc command:

■ OFSA processes should not be running when this command is run.

■ OFSA should not be sharing a uid with anything else, including Oracle
database processes.

■ Users that run OFSA and Oracle under the same uid must shut down Oracle
before using this command.

■ The command must be run using the same user as the one used for OFSA.

The rmipc command operates by deleting all shared resources owned by the uid
that runs the command. This includes semaphores, shared memory segments and
message queues.

Multiple OFSA Server-Centric Application Instances
A server can be set up to run more than one instance of the OFSA application as
long as each instance of the application is running against a different OFSA
database. Each RQ is started and run independently from the other and should
specify a different database instance and log file. Different databases can be
configured to use separate .INI files by copying and editing the rq shell script
located in the bin directory for each database release.

Caution: If the OFSA application are running under the same uid
as non-OFSA applications, the use of this command can result in
unintended consequences.

Other Configuration Issues

6-38 Oracle Financial Services Installation and Configuration Guide

Client Software Installation and Configuration 7-1

7
Client Software Installation and

Configuration

This chapter provides information on installing, configuring, and upgrading the
client-side of the Oracle Financial Services Applications (OFSA) group of
applications. The following topics are included in this chapter:

■ Verifying the Correct Client Workstation Software

■ Installing the Client-Side OFSA Software

■ Upgrading the Client-Side Software

■ Setting the Date Format in NT 4.0

■ Troubleshooting Client Installations

■ Running Multiple OFSA Applications Simultaneously

■ .INI Settings

■ Debug Settings

■ Application-Specific Settings

■ Client PC Memory Considerations

Verifying the Correct Client Workstation Software
This section provides information on the software that needs to be in place before
you begin installing the OFSA software and illustrates the communication layers
between the client and database.

Verifying the Correct Client Workstation Software

7-2 Oracle Financial Services Installation and Configuration Guide

Verifying the Installation of the Client Workstation Environment
Before you begin installing this release of the client-side software make sure that
either Windows 95/98 or NT is installed on the client workstation. Windows 3.1 is
not supported.

Verifying the Installation of Your Network Protocol
Verify that your network protocol is set up and configured correctly.

The following illustration depicts the layers of communication required for the
OFSA group of applications.

Network
Protocol

Network
Protocol

Oracle8

Database

SQL*Net/NET8SQL*Net/NET8

Client
Application

Installing the Client-Side OFSA Software

Client Software Installation and Configuration 7-3

Installing the Client-Side OFSA Software
The client-side of the OFSA software is shipped on CD-ROM and uses Oracle
Installer for the installation routine.

Installing on Windows 95/98
Oracle recommends that you always perform a reboot prior to installing OFSA on a
Windows 95 or Windows 98 PC. This clears any potential OFSA DLLs that might be
running in memory. If you do not perform a reboot, the OFSA installation can
terminate abnormally if existing OFSA DLLs are running in memory.

16-bit and 32-bit Installations
OFSA applications and functionality use both 16-bit and 32-bit technology
components. To properly install the required technology you need to run the
installation routine twice, first for the 16-bit components and then for the 32-bit
components.

Each set of components is located in different directories on the CD-ROM. Select the
Windows directory to install the 16-bit components and the WIN32 directory to
install the 32-bit components.

Required Technology Components
Each OFSA application in the Oracle Installer requires additional technology
components for operation. All required technology components must be installed in
order for the application to function properly.

Note: The Market Manager application is not included on the
OFSA 4.5 CD. However, Market Manager version 4.0 is compatible
with the FDM 4.5 database (with the Market Manager database
objects installed). Use the OFSA 4.0 CD to install this version
Market Manager. Refer to the 4.0 version of the Oracle Financial
Services Installation and Configuration Guide for information
regarding how to install Market Manager.

Note: Installation for Oracle Budgeting & Planning is described in
Chapter 7, "Client Software Installation and Configuration".

Installing the Client-Side OFSA Software

7-4 Oracle Financial Services Installation and Configuration Guide

The required technology components for OFSA are categorized as follows:

■ 16-bit components included in the Oracle Installer

■ 32-bit components included in the Oracle Installer

■ Third-party components

Third-party components are defined as required technology components that are
not included in the Oracle Installer. Non-Oracle and Oracle applications (such as
Oracle Discoverer) not included on the OFSA CD are categorized as Third-party.

Refer to Chapter 3, "Certifications" for a detailed list of components (and certified
versions) required for the OFSA applications. When installing an OFSA application,
all 32-bit required components included with the Oracle Installer are installed
automatically. This means that you select only the specific OFSA application to
install and all of the 32-bit required technology components are automatically
installed as well.

However, 16-bit required technology components must be installed separately from
the Windows directory on the CD. All third-party components must also be
installed separately. Third party components are marked with an asterisk (*) in the
Certifications chapter.

Installing the Software
This section provides the steps for installing the OFSA applications and both 16-bit
and 32-bit components from the CD-ROM.

Installing the 16-bit Components
Only 16-bit technology components are installed using this routine. OFSA
applications and functionality are installed with the 32-bit installation routine.

Complete the following steps to install the 16-bit technology components.

Note: Be sure to install Discoverer 3.1. OFSA requires Discoverer
for the OFSA Standard Reports.

Note: Technology stack references for Market Manager version 4.0
are not included in the Certifications chapter. However, Market
Manager version 4.0.3 is compatible with the FDM 4.5 database.

Installing the Client-Side OFSA Software

Client Software Installation and Configuration 7-5

1. Insert the CD-ROM into the CD-ROM drive.

2. Select the Windows directory and run setup.exe.

This launches Oracle Installer and leads you through the following sequence of
dialogs.

a. Language dialog

Use the selection box to select the language for Oracle Installer. The default
setting is English.

b. Oracle Installation Settings dialog

The information requested in this dialog includes your company name and
the Oracle home.

The default setting for the 16-bit components, for both NT and Windows
95/98, is C:\ORAWIN.

After selecting the directory location for the OFSA software, the Software Asset
Manager dialog appears.

3. From the Software Asset Manager dialog select the technology components you
want to install.

Components available for installation appear in the left pane of the dialog.
Oracle components currently on the client, in the Oracle Home directory,
appear in the right pane.

Caution: You can run Oracle Installer only from a local drive or a
drive that has been mapped using Windows Explorer (that is, a
letter assignment exists for the drive). Do not use Network
Neighborhood to run Oracle Installer. If you do, it does not install
the OFSA applications properly.

Caution: The Oracle Installer does not support spaces or special
characters in target directory names. Use dash (-) or underscore
(_) instead when specifying an installation target directory name.

Installing the Client-Side OFSA Software

7-6 Oracle Financial Services Installation and Configuration Guide

a. If you are installing a single component, use your mouse to highlight that
application.

b. If you are installing multiple components, use your mouse and either the
Shift or Control key to highlight the desired items.

c. After highlighting the components you want, click Install.

If either configuration or software version conflicts exist, dialogs appear.
Resolve these as recommended in the dialogs.

4. When the installation is complete the Installation Completed dialog appears.
Click OK.

5. The Software Asset Manager dialog re-appears. Click Exit.

This completes the installation of the 16-bit components.

Feedback on Space Requirements and Selected Technology Components

Two information boxes appear below the left and right panes of the Software Asset
Manager dialog. The first box provides feedback on space requirements for the
OFSA items selected from the left pane and space availability on the client. The
second box lists the technology components you are installing on the client.

Installing the 32-bit Components and OFSA Applications
OFSA applications and functionality as well as 32-bit technology components are
installed using this installation routine.

Although Oracle Installer enables you to install multiple MAJOR releases (differing
in first two digits, e.g. 4.0 and 4.5) of the OFSA software on the client, this option is
not recommended. You should always uninstall existing OFSA software before
installing a new version of the same major release (such as 4.5 and 4.5.1).

Complete the following steps to install the OFSA applications, functionality and
technology components.

1. Insert the CD-ROM into the CD-ROM drive.

Caution: You can run Oracle Installer only from a local drive or a
drive that has been mapped using Windows Explorer (a letter
assignment exists for the drive). Do not use Network
Neighborhood to run Oracle Installer. If you do, it does not install
the OFSA software properly.

Installing the Client-Side OFSA Software

Client Software Installation and Configuration 7-7

2. Select the WIN32 directory and run setup.exe.

This launches Oracle Installer and leads you through the following sequence of
dialogs.

a. Oracle Installation Settings dialog

Use this dialog to enter your company’s name, the location of the
ORACLE_HOME directory and the language setting.

The default setting for ORACLE_HOME for NT is C:\ORANT and for
Windows 95/98 is C:\ORAWIN95.

The default language setting is English.

After selecting the directory location and language setting the Software Asset
Manager dialog appears.

3. From the Software Asset Manager dialog, select the application or applications
and appropriate technology components you want to install. Applications and
components available for installation appear in the left pane of the dialog.
Oracle applications and components currently on the client, in the Oracle Home
directory, appear in the right pane.

a. If you are installing a single application or component, use your mouse to
highlight that application or component.

b. If you are installing multiple applications and components, use your mouse
and either the Shift or Control key to highlight the desired items.

Caution: The Oracle Installer does not support spaces or special
characters in target directory names. Use dash (-) or underscore
(_) instead when specifying an installation target directory name.

Note: The installation of Budgeting & Planning requires
additional steps. If you are installing Budgeting & Planning, see
Chapter 8, "Budgeting & Planning Server-Side Installation and
Setup".

Installing the Client-Side OFSA Software

7-8 Oracle Financial Services Installation and Configuration Guide

4. After highlighting the applications and appropriate technology components,
click Install.

5. The Oracle Financial Services Product Home dialog appears.

This dialog identifies the directory location where you are installing the OFSA
software.

The default setting for NT is C:\ORANT\OFSA45.

The default setting for Windows 95/98 is C:\ORAWIN95\OFSA45.

6. After selecting the directory location the installation is launched and technical
dependencies analyzed.

The installation routine begins comparing versions of technical components on
the client against versions on the CD-ROM. If an older version exists on the
client, an Update dialog appears, prompting you to upgrade to the newer
version. Always click OK to accept the newer version.

7. After all dependencies have been analyzed and updated, the Required Products
dialog appears. This dialog lists all required technical components to be

Note: A + precedes some items in the left pane of the Asset
Manager window. This indicates that a sub-hierarchy of selections
are available. Access these additional selections by double-clicking
on the selection that is preceded by the +.

A - indicates that all available selections at the sub-hierarchy level
are shown.

Note: All Oracle applications must be installed in an Oracle Home
directory.

Caution: The Oracle Installer does not support spaces or special
characters in target directory names. Use dash (-) or underscore
(_) instead when specifying an installation target directory name.

Installing the Client-Side OFSA Software

Client Software Installation and Configuration 7-9

installed and any additional applications and components that you have
selected. Click OK.

8. When the installation is complete the General Information dialog appears
indicating the installation was successful. Click OK.

9. The Software Asset Manager dialog re-appears. Click Exit.

This completes the installation procedure for the OFSA applications and
functionality and 32-bit technology components.

Installing Discoverer with FDM Administration

Always install Discover before installing the FDM Administration application. If
you install Discoverer after installing the FDM Administration application, you
must re-install FDM Administration for it to work properly.

Installing Budgeting & Planning
Because Budgeting & Planning works in conjunction with Oracle Financial
Analyzer (OFA), additional steps are required to successfully complete an
installation of this application. Refer to Chapter 8, "Budgeting & Planning
Server-Side Installation and Setup" for additional instructions on installing this
application.

Installing Discoverer Integrator
Only administrators or power users responsible for integrating Oracle Discoverer
for the OFSA Reporting Data Mart should install the Discoverer Integrator.

Caution: Installing Discoverer after installing the FDM
Administration application causes a DLL error.

Installing the Client-Side OFSA Software

7-10 Oracle Financial Services Installation and Configuration Guide

Installing FDM Administration
Only administrators responsible for managing security and objects within the
database should install the FDM Administration application.

Installing the Documentation HTML Help Files
The Oracle Installer automatically installs documentation for the OFSA group of
applications whenever you install OFSA applications. You can also install the
documentation separately.

To install the Documentation HTML Help files separately, highlight Oracle
Financial Services Documentation 4.5 in the left pane and click the Install button.
During the installation process, the Documentation Install Options dialog box
appears, prompting you to select one of the three following options:

Caution: If you install Discoverer with the OFSA group of
applications and, at a later time, decide to uninstall National
Language Support (NLS), which is included in OFSA, Discoverer
no longer works.

If you proceed to uninstall NLS, a dialog box appears alerting you
that the removal of the NLS component will cause other Oracle
applications to fail. It is recommended that you keep NLS as a
component of OFSA.

Option Description

Install documentation on local disk Select this option if you want to copy the
HTML Help files to the disk drive on the local
computer.

Use documentation on disk server or
CD-ROM

Select this option if you plan to access the
HTML files from the CD-ROM in the
CD-ROM drive rather than copying the files to
the local computer.

Use documentation on web server This option enables you to view the HTML
files through your browser, using a URL to
access the files.

Installing the Client-Side OFSA Software

Client Software Installation and Configuration 7-11

After selecting the installation method, you are prompted to designate the source
drive location of the documentation files. If you are installing the HTML files on the
local disk or using the CD-ROM, enter the drive information and click OK.

If you select the web server option, be sure that the documentation HTML files have
been installed on your web server before completing this procedure. You also need
to know the URL to access the HTML files. Contact your System Administrator if
you are unsure about the installation of these files on the web server or the URL.

The Documentation Install Options dialog box provides additional information
about each option through the Help button. To access this information, select the
installation method you are considering and then select Help. A description of the
selected method appears.

Software Required for HTML Help Files
In order to operate Help from within OFSA, Internet Explorer version 4.0 or greater
must be installed. Then, you can use the browser of your choice to access OFSA
Help.

Browser Support for HTML Help Files
All browser versions are supported in NT.

The following browser versions are supported in Windows 95/98:

Configuring SQL*Net and Oracle NET8
Oracle Installer automatically installs or verifies the prior installation of the
networking software required by the applications you are installing on the client.
There are three different networking applications for communication with the
OFSA database:

■ 16-bit SQL*Net

Browser Version

Netscape Version 4.x

Internet Explorer Version 4.0.x with the following
exception: 4.40.308

Installing the Client-Side OFSA Software

7-12 Oracle Financial Services Installation and Configuration Guide

■ 32-bit SQL*Net

■ Net8

The following table lists the appropriate networking software for each OFSA
application/functionality:

The following table provides information needed to configure both SQL*Net and
NET8.

Note: References for Market Manager version 4.0 are included
here even though Market Manager is not part of the OFSA 4.5 CD.
Market Manager version 4.0 is compatible with the FDM 4.5
database and is therefore listed for reference purposes.

OFSA Application/Functionality Oracle Networking Software

Balance & Control 16-bit SQL*Net

Budgeting & Planning None - Web enabled

Discoverer Net8

Discoverer Integrator Net8

FDM Administration Net8

Market Manager (version 4.0) Net8

32-bit SQL*Net

Performance Analyzer 16-bit SQL*Net

Portfolio Analyzer 16-bit SQL*Net

Rate Manager Net8

Risk Manager 16-bit SQL*Net

Transfer Pricing 16-bit SQL*Net

Transfer Pricing, Risk Manager and Performance
Analyzer knowledge engines

Net8

Installing the Client-Side OFSA Software

Client Software Installation and Configuration 7-13

Establishing the Link Between the Client Workstation and the Database
Both SQL*Net and NET8 give you the option of providing one name for the
database instance on the server and a different name (database source) for the same
database as it is recognized by the OFSA group of application. SQL*Net and NET8
provide the link through the database alias.

The following diagram illustrates the link between the client workstation and the
server, through SQL*Net or NET8, to access the database.

Configuring ODBC
The following table provides information to configure the ODBC drivers.

Required Information Description

Database alias This is the name by which the networking software recognizes
the database. You also need this name to configure the OFS.INI
file.

Hostname1

1 Your DBA needs to provide the names of the hostname and database instance. You should have these
names prior to configuring the networking software.

This is the name of the server on which the database is located.

Database instance‡ This is the name by which the server recognizes the database.

OFS Application/Functionality
Datasource
Requirements .INI File Configuration

Import/Export functionality dBase IV ■ The datasource name =
xbase.

OFS.INI File SQL*Net/NET8 Database

Data Source Name
=

Database Alias

Database Alias
=

Database Name

Database Name

Installing the Client-Side OFSA Software

7-14 Oracle Financial Services Installation and Configuration Guide

Modifying the OFS.INI File
The installation program creates the OFS.INI file and locates it in the directory
where your operating system resides. Typically, this is in the WINNT or WIN95
directory. This file provides a list of datasources available within the OFSA group of
applications and data unique to each datasource.

The installation program creates a sample OFS.INI file. You can modify this sample
file or create your own.

Data Sources
An example of a the Data Source section of the OFS.INI file appears as follows:

The following table describes each of the components of the Data Source section in
OFS.INI file.

Market Manager (version 4.0) 32-bit Oracle
datasource

■ The database alias is the
name used by
SQL*Net/NET8.

■ The datasource name is the
name of the database as it
appears in the OFSA
application.

Note: The OFS.INI file is not used for FDM Administration, Rate
Manager, or Market Manager.

[DataSources]

Oracle_Example = YES

[Oracle_Example]

DriverType = ORACLE

Database = PrimaryDatabase

LogonID = USER_ID

OFS Application/Functionality
Datasource
Requirements .INI File Configuration

Installing the Client-Side OFSA Software

Client Software Installation and Configuration 7-15

Tree Rollup Save Behavior Settings
A configuration option controls integrity checking of IDs when a Tree Rollup is
saved. Specifically, when the levels of a Tree Rollup are inserted or deleted
dependent Allocation IDs, Table IDs, and Tree Filter IDs reflect the Tree Rollup
change. A record of the change is reflected in OFSA_MESSAGE_LOG. A standard
Discoverer report, errormsg.dis, can be installed to navigate OFSA_MESSAGE_
LOG. The syntax of the configuration option in OFS.INI is:

[options]

checkallocinteg=1

where

checkallocinteg=1 means check integrity

OFS.INI Component Description

[Datasources] This is the list of datasources (databases) created within the OFSA group of
applications. In this example, the datasource is called Oracle_Example. This is
the database name that appears in the OFSA applications.

If you type YES, this datasource appears on the login window when the
application is launched. If you enter No, this datasource does not appear.

You can list multiple datasources in the OFS.INI file.

[Oracle_Example] This heading indicates that the information entered pertains to this
datasource only.

The name of this database (Oracle_Example) appears in the list of
Datasources. If you are using multiple databases, each needs to be entered
under [Datasources] as shown by the example in which Oracle_Example is
entered as a database within the OFS applications.

DriverType This indicates the database driver to use to connect to the datasource. This
should always be ORACLE and is not case-sensitive.

ServerName Enter the database alias here. This is the database name that SQL*Net or
NET8 will recognize. See the section entitled "Establishing the Link Between
the Client Workstation and the Database" in this chapter for more
information.

Database Normally this is the same as ServerName. If ServerName is blank, this should
be the value of the $ORACLE_SID.

Login ID This is the default login ID for the end user (user ID). The login ID entered
here appears on the Login window.

Upgrading the Client-Side Software

7-16 Oracle Financial Services Installation and Configuration Guide

checkallocinteg=0 means do not check integrity

If the configuration option does not exist in OFS.INI, the default is 0, do not check
integrity.

Request Queue Communication Settings
The [OFSRQ] section of the OFS.INI file gives you control over how often the Server
Status window is updated and how long to wait before determining that the Server
Request Queue component is not available.

ClientPollInterval
This setting controls how often the Server Status window is refreshed. Time is
measured in milliseconds. The default setting is 1,650 milliseconds (1.6 seconds).

ServerTimeOut

This setting controls how long to wait for a response to a ping request. The time is
measured in seconds. The default setting is 30 seconds. This setting should be at
least 10 times the poll interval used by Request Queue (default is 3 seconds). If the
ServerTimeOut setting is too short, false timeouts can occur. For more information
on this setting refer to Chapter 20, "Request Queue".

Upgrading the Client-Side Software
Before running the upgrade process uninstall your existing OFSA software.
Highlight the previous version (OFSA 3.5 or OFSA 4.0) of the OFSA applications
within the Oracle Installer and select Remove. This removes the components from
your system. You can then proceed with installing the OFSA 4.5 applications.

OFSRQ Options Default Setting

ClientPollInterval = <number> Time in milliseconds Default = 1650

OFSRQ Options Default Setting

ServerTimeOut = <number> Timeout in seconds Default = 30

Troubleshooting Client Installations

Client Software Installation and Configuration 7-17

Setting the Date Format in NT 4.0
If the date format does not appear correctly in the OFSA applications and you are
running NT 4.0, add the following key to your NT registry in HKEY_LOCAL_
MACHINE /SOFTWARE/ORACLE:

NLS_DATE_FORMAT:REG_EXPAND_SZ:MM/DD/YYYY

By adding this key, you ensure that NT-based Oracle applications you are running
use the OFSA-required date format when interpreting DATE literals.

Troubleshooting Client Installations

General Guidelines
As a general rule, always un-install any existing installation of OFSA on the client
PC using the Oracle Installer prior to installing a new version. However, in some
situations, you can encounter difficulty in successfully un-installing OFSA using the
Oracle Installer due to file or registry corruption. In these situations, refer to the
following guidelines:

■ Close Windows Explorer before installing or de-installing OFSA software.

■ Install the OFSA application individually (overwriting the existing installation).
This corrects any registry errors for the individual application. Once the
application has been re-installed, remove the application using the Oracle
Installer. The application can now be installed cleanly.

■ If the guideline does not correct the problem, install the Oracle Financial
Services Applications Clients 4.0 entry in the Oracle Installer. This installs all of
the OFSA applications and corrects any registry errors common to all of the
applications. Once the installation is complete, remove all of the OFSA
applications using the Oracle Installer. Individual applications or all OFSA
applications can now be installed cleanly.

Avoiding “Permission Denied” Messages for DLL Files When Installing
or Deinstalling OFSA Software
This message results from DLLs in use by other programs that are running at the
same time that you are installing or deinstalling OFSA applications or if a task
called JAVA is running at the same time.

Troubleshooting Client Installations

7-18 Oracle Financial Services Installation and Configuration Guide

Sometime OFSA applications or the Net8 Easy Config program leaves a JAVA task
running after the application or program has been closed. This task uses
NETDIR.DLL as well as other DLLs that begin with the letter “J.”

Avoid this message by taking the following precautions:

1. Close all applications, including Explorer, before beginning your installation or
deinstallation.

2. Check your system for open windowless tasks, such as JAVA or MS Office Find
Fast.

■ In Windows NT, open the Task Manager and close all programs that are
running.

■ In Windows 95/98, use Ctrl-Alt-Delete to activate the Close Program function
and close all tasks that are running.

Avoiding an “Invalid instantiation string” Error When Installing
Applications and Documentation In a Single Step on Windows 95/98
If you are installing on Windows 95/98, you cannot install both the OFSA software
and the documentation HTML Help files at the same time. If you do the Invalid
instantiation string error message appears.

Avoid this problem by using a two-step installation process. Install the OFSA
software first, then install the documentation HTML Help files.

Installing the Documentation Icon Manually When It Does Not Appear in
the Programs Menu
If OFSA documentation is not installed on a local PC, the icon for documentation
does not appear in the Programs menu.

If you are installing the documentation HTML Help files from either a file server or
a web server, include the documentation icon in your Program menu by following
these steps:

1. Go to Settings>Taskbar>Start Menu Programs tab>Add button.

2. Use the browse functionality to locate the file “index.htm.”

Note: The Permission Denied message can continue to appear even
after closing all open programs and functions. If this occurs, reboot
your system.

Troubleshooting Client Installations

Client Software Installation and Configuration 7-19

3. Place the file in the OFSA Program folder.

If you plan to access documentation HTML Help files using the client-side
CD-ROM from the local drive, follow the steps but, in step 2, use the following link:
win32\OFSOLH\index.htm.

Avoiding a “write error” Message When Installing or Deinstalling OFSA
Software
This message can appear if a directory being installed or deinstalled by Oracle
Installer is open in Windows Explorer. When this message appears, you may need
to reboot your system to clear the problem.

Windows Explorer Hangs After Deinstalling OFSA Software
If Windows Explorer is open to a directory that Oracle Installer deinstalls, the
Explorer program can hang. The result can be a general paralysis of your system,
including the inability to look at directories or to start new programs. This situation
may persist even after rebooting your system because Explorer starts in the last
directory, which is now non-existent, that was open before you shut down your
computer.

Fix this problem by starting Explorer from Start>Run and entering a directory in the
Open: field, such as “explorer c:\”.

Install Oracle Applications Desktop Integrator (ADI) First If Installing
Both ADI and OFSA 4.0
If you plan to install ADI, it is essential that you install ADI first, then install OFSA
4.0. If you reverse the order and install the OFSA software first, several OFSA
objects are overwritten with older ADI DLLs and executables.

The following files are overwritten (example shows an NT installation):

■ C:\orant\bin\IM25W32.DLL

■ C:\orant\bin\MMC21W32.DLL

■ C:\orant\bin\MMI21W32.DLL

■ C:\orant\bin\REGSVR32.EXE

■ C:\orant\bin\UTL25W32.DLL

Running Multiple OFSA Applications Simultaneously

7-20 Oracle Financial Services Installation and Configuration Guide

Running Multiple OFSA Applications Simultaneously
The Oracle Installer automatically configures the OFSA group of applications to
Run in Separate Memory Space on NT client. This enables you to launch multiple
instances of the individual OFS applications on your NT PC simultaneously.

Because Windows 95/98 does not support running applications in a separate
memory space, it is not possible to launch multiple instances of the individual OFS
applications on a Windows 95/98 PC.

.INI Settings
Descriptions of the .INI settings, found in the [options] section of the .INI file are
listed in the following tables.

Maximize
This attribute defines whether the multiple document interface (MDI) windows are
created and displayed in full or regular window mode.

FillColor
FillColor defines the background colors of the dialog controls for each application’s
MDI window. The content of red, green and blue is controlled by the numbers
associated with each letter.

■ Red is controlled by the x value

■ Green is controlled by the y value

■ Blue is controlled by the z value

Parameter Selections Default Setting

Maximize=[0|1] 0 - MDI windows are created in full window
mode

1 - MDI windows created in regular window
mode

Default = 1

.INI Settings

Client Software Installation and Configuration 7-21

The default setting is teal green and represented by the value “000 128 128.” White
would be represented by “000 000 000.”

Modulus
When making SQL fetches from the database, OFSA keeps a running count of the
rows fetched. This incremental number can be displayed on the status bar in
increments you define using the modulus option. The n value you select tells OFSA
to update the status bar display each time the number of fetches reaches this pre-set
number.

For example, if n is set at 300, OFSA displays the running total every 300 rows. At
300 rows fetched, it displays 300, at 600 row it displays 600 and so forth.

Face
Face defines the type of font used for the spreadsheet and tree display.

Parameter Selections Default Setting

FillColor=[xxx yyy zzz] xxx = 000 to 255

yyy = 000 to 255

zzz = 000 to 255

Default = 000 128 128

Parameter Selections Default Setting

Modulus=[n] n = 1 to n Default = 100

Parameter Selections Default Setting

Face = [Font_name] Any installed True Type and raster
(bitmap) fonts

Default = Arial

.INI Settings

7-22 Oracle Financial Services Installation and Configuration Guide

FaceWeight
Face weight sets the weight of the font used.

Parameter Selections Default Setting

FaceWeight = [n] n = 400 (normal weight) or 800
(bold weight)

Default = 400

Debug Settings

Client Software Installation and Configuration 7-23

Size
Size defines the font size, in points, for the font defined by Face.

Italic
The italic font attribute for the font defined by the Face is turned on or off with this
parameter.

Debug Settings
Each application’s .INI file includes a [Debug] section. You would normally enable
this only in response to a request from Oracle Support Services.

OFSA provides three debug levels, defined as Level 1, Level 2, and Level 3.
However, Level 3 is the only active debugging level. Level 1 and Level 2 are either
disabled or not used.

Level 3
Used for access layer debugging. Level 3 defines the lowest and most detailed
debugging level. This level produces maximum debugging information.

Parameter Selections Default Setting

Size=[n] n = 1 to 144 Default = 16

A 72-point font is one inch high.

Parameter Selections Default Setting

Italic=[0|1] 0 - Italic attribute not used

1 - Italic attribute used

Default = 0

Note: Debugging in this section refers only to the client and not the
server.

Application-Specific Settings

7-24 Oracle Financial Services Installation and Configuration Guide

The OFSA applications write SQL statement syntax at this level.

Level 2
Currently not used.

Level 1
Currently disabled. Level 1 defines the highest and least detailed debugging level.
This level is intended to produce minimum debugging information.

Application-Specific Settings
Each application has its own .INI file. Application-specific settings are described in
the following sections.

Balance & Control
Balance & Control settings are located in the OFSBC.INI file.

[Options]
Determines the maximum size of a cached looup table.

Debug Level Options Default Setting

Level3=[0|1] 1 - Level 3 debug is ON

0- Level 3 debug is OFF

Default = 0

Debug Level Options Default Setting

Level1=[0|1] 1 - Level 1 debug is ON

0- Level 1 debug is OFF

Default = 0

Note: Some applications do not have any application-specific
settings. If this is the case, they are not included in this section.

Client PC Memory Considerations

Client Software Installation and Configuration 7-25

Maxlooup = 16000
If a lookup table contains more than the maxlookup rows, the rows are read when
needed using a parameterized select statement.

Performance Analyzer
Performance Analyzer settings are located in OFSPA.INI.

[Options]

epm
Extended Printer Memory - the number of rows kept in memory before flushing for
a report preview.

epm=[n]

n = minimum = 1, maximum determined by available memory

Default = 500

Client PC Memory Considerations
Client PCs may experience memory limitations when operating against database
with a large number of Leaf Values. The FDM database supports up to 200,000 Leaf
values in version 4.5. This section describes some techniques when you are running
in such environments:

Tree IDs
Opening a tree type ID loads all leaves into memory. You should only open one
large tree in a session. If you need to edit two or more trees, quit and restart the
application between edit sessions. Within a single tree editing session, you can
complete a significant number of edits and changes before your system memory is
affected. Some leaves have associated leaf tables (like Org Unit and Original Org
unit) and editing those leaves requires the other leaf list to load into memory. This
strains the system memory.

To avoid showing too many leaves and to increase response time, when editing a
tree, first collapse the entire tree. Then Search on the Tree side for the leaf or node

Note: For the PCs used to work with a database containing
200,000 leaves, 128 megabytes of memory are recommended.

Client PC Memory Considerations

7-26 Oracle Financial Services Installation and Configuration Guide

you want. When Search finds your leaf it opens only that branch and the related
branches leading to it.

When creating a tree, collapse the Tree down to just the levels you need or first
focus on the branch that you are editing. Then set the Display side to Orphans and
perform your search by leaf value or description on the Display side. You can then
drag over the leaves you find from the right side to the node on the left.

Leaf Setup
Leaf Setup was designed to minimize memory use. Make an effort to display only
the leaf values and ranges that you need. If you click the Edit button to edit details
about a leaf value, you will load all leaves into memory (causing a delay during this
process) and that will stress your system. Limit editing of leaves to one or possibly
two leaf types during one session.

Caution: Do not use the Search and Focus feature. Search and
Focus focuses down to the target leaf when it finds it and you will
lose your tree context.

Caution: If you attempt to edit too many leaf types, your system can
become unstable and crash. Close the application and restart it before
editing another leaf type.

Budgeting & Planning Server-Side Installation and Setup 8-1

8
Budgeting & Planning Server-Side

Installation and Setup

This chapter presents information on the software components, in addition to the
Budgeting & Planning application, that are required to run the Budgeting &
Planning process and additional installation routines that are essential to
completing the installation process.

The following topics are addressed in this chapter:

■ Before Installing Budgeting & Planning

■ Budgeting & Planning Server Installation

■ Administering the Budgeting & Planning Databases

■ Configuring the Web Listener and Java Client

Budgeting & Planning is designed to work in conjunction with the following Oracle
products:

■ Oracle Application Server 4.0.8.1

■ Oracle Express Server 6.3.0.1

■ Oracle Web Agent 6.3.0.1

■ Oracle Financial Analyzer 6.3.0.0

■ J Initiator 1.1.7.29

Note: Try to obtain the exact versions. If you are unable to order
these exact versions, contact Oracle Support Services before
proceeding.

Before Installing Budgeting & Planning

8-2 Oracle Financial Services Installation and Configuration Guide

If you are running the Oracle Financial Services Applications (OFSA) group of
applications, install the applications mentioned above in addition to the Oracle
Financial Data Manager (FDM) database.

If you are responsible for installing Oracle Express Server and Oracle Financial
Analyzer (OFA), refer to the appropriate sections in the Installation Guides for these
products.

You install Budgeting & Planning using Oracle Installer, which is included on the
OFSA CD-ROM. Refer to Chapter 6, "UNIX Server Installation and Configuration"
for additional information on installing OFSA applications and configuring your
OFSA environment.

Before Installing Budgeting & Planning
Before you begin to install Budgeting & Planning you must obtain the following
installation and configuration manuals.

■ Oracle Application Server for Windows NT, Installation Guide, Part No.
A58756-03 or Oracle Application Server for Sun SPARC Solaris 2.x, Installation
Guide, Part No. A58755-03

■ Oracle Express Web Products, Installation Guide, Release 6.3, Part No.
A75233-01

■ Oracle Express Database Administration Guide, Release 6.3, Part No. A74956-01

■ Obtain the Oracle Express Server Installation and Configuration Guide Release
6.3 appropriate for your environment:

■ For Windows NT, Part No A75298-01

■ For Sun Sparc Solaris, Part No. A75299-01

■ For HP 9000 Series HP-UX, Part No. A83777-01

■ Oracle Financial Analyzer, Installation and Upgrade Guide, Part No. A68143-01

Budgeting & Planning 4.5 is designed to run with:

■ Oracle Application Server 4.0.8.1

■ Oracle Express Server Release 6.3.0.1

■ Oracle Web Agent 6.3.0.1 (with patch "OWA630_P1.exe")

■ Oracle Financial Analyzer (OFA) Release 6.3.0.0 (with patch "6325_2.exe")

Before Installing Budgeting & Planning

Budgeting & Planning Server-Side Installation and Setup 8-3

Install these applications in the exact order as they are listed. Install all of these
products before installing Budgeting & Planning.

Also, be sure that Oracle Express Server is running before you install the OFA
product because OFA attaches to the Express Server. If the server is not running, the
installation will not succeed.

In conjunction with OFA, prepare the OFA Super Administrator database. To do so,
you must input database information and (if your organization needs more than the
seven dimensions provided in Budgeting & Planning) create user-defined
dimensions.

Input the following information to prepare the Super Administrator database:

■ The language used by your end users

■ The month in which your current fiscal year begins

■ The current fiscal year and month in your FDM RDBMS (if applicable)

■ The fiscal years for which your organization has actual and forecasted data

■ The username and the password of the FDM Schema Owner

■ The TNSNAMES alias for the FDM database instance

After installing OFA the next task is setting up a Super Administrator workstation.
Refer to the OFA documentation for the steps you need to follow to complete this
task. After creating the Super Administrator workstation, you can prepare the
Super Administrator database.

Note: When you install the Oracle Application Server before
upgrading/re-installing the Oracle Express Server, the Oracle
Express Server installation automatically configures the web
listener included with the Oracle Application Server. See the Oracle
Express Server Web Products Installation Guide for more
information or if you need to configure the web listener manually.

Note: If you are installing on UNIX, see the section entitled
"Setting Operating System Privileges in UNIX" in this chapter for
important information on setting privileges.

You need to set these privileges after you install the Express Server
but before you install OFA and Budgeting & Planning.

Before Installing Budgeting & Planning

8-4 Oracle Financial Services Installation and Configuration Guide

Perform the following steps to complete this task:

1. Launch the OFA client interface and log in as the Super Administrator.

2. Select the default language for the application.

3. Select Maintain>Time from the menu bar to add the number of years for which
you have actual and forecasted data.

You are prompted to type the fiscal start month of your fiscal year before you
can add the years for actual and forecasted data. Add years in chronological
order, starting with the oldest historical year.

If you are not adding a user-defined dimension, you can exit OFA now. This
completes the required Super Administrator database preparation.

This release of Budgeting & Planning enables you to add one user-defined
dimension to the Budgeting & Planning data model. If you are adding a dimension,
then proceed to the next step. Be sure to refer to the section entitled "Adding a
User-defined Dimension" in this chapter for additional steps to follow later to add a
dimension to the Budgeting & Planning data model.

4. Create your dimension from Maintain>Dimension on the menu bar.

5. Create at least one of your dimension values from Maintain>Dimension Values
on the menu bar.

6. Exit OFA.

Completing the Super Administrator’s Database Set Up

The next two steps are done through Express Administrator.

First, test the OCI SQL connection to the FDM RDMBS at this point by following the
next step.

7. Issue these Express commands in Express Administrator:

sql.dbms = ’ORACLE’
sql connect ’<user>/<password>@<dbname>’
sql disconnect

Note: You must create at least one dimension value for your
user-defined dimension.

Budgeting & Planning Server Installation

Budgeting & Planning Server-Side Installation and Setup 8-5

where user and password are the username and the password of the FDM
Schema Owner, and dbname is the TNSNAMES alias (in the tnsnames.ora file
installed on the same platform as the Express/OFA server) for the FDM
database instance.

These commands should execute with no errors. If you receive an error, refer to
the Oracle Express Server Installation and Configuration Guide for your platform,
and to the applicable SQL*Net or Oracle Net8 documentation.

8. Back up the following OFA database files from the OFA Super Administrator’s
directories, by copying them to another name or a different directory:

From the .../super/users directory, back up the super.db database file.

From the.../super/shared directory, back up the ofas.db.

Preparing the Super Administrator database is now complete.

Installing the OFSA Group of Applications
If your organization intends to use other OFSA applications with Budgeting &
Planning, the next step is to install the FDM database and the OFSA group of
applications. Refer to the appropriate chapters in this guide for steps to follow to
complete this phase of this installation.

On UNIX, the OFSA server software package must be installed on your server, even
if you are not planning to use any other OFSA applications. If you are not using any
other OFSA applications, you do not need to install the FDM database.

On an NT server, run Oracle Installer on the OFSA client-side CD-ROM and install
Oracle Budgeting & Planning Server 4.5 from the Oracle Financial Services
Applications Servers 4.5 entry.

Budgeting & Planning Server Installation
After the server side of the OFSA installation is complete (including the Budgeting
& Planning application) the next step is to install and attach two additional

Caution: Resolve any connection problems before proceeding
with the rest of the installation. If you do not, you will not be able
to successfully complete the installation.

Budgeting & Planning Server Installation

8-6 Oracle Financial Services Installation and Configuration Guide

databases that are specifically designed for Budgeting & Planning. These databases
are called FSBPTOOL and FSLANG.

The FSBPTOOL database contains all Budgeting & Planning Express-based
programs, as well as some working dimensions and temporary working variables.

The FSLANG database contains descriptions and labels for all objects in the
Budgeting & Planning model created as OFA-enabled as well as descriptions and
labels for each of the seeded dimension values for every OFA-enabled dimension.

Installing the FSBPTOOL and FSLANG Databases
The Budgeting & Planning application attaches these two databases each time you
start up the application. Complete the following steps to create both of these
databases.

These steps include directions for installing these databases on both UNIX and NT
platforms.

1. If you are using UNIX...

a. Log onto the server using the Oracle account.

b. Change directory to the OFSA_INSTALL/<ofsa release>/ofsbpsrv
directory.

c. Execute the install_eif script to copy the required Express export and setup
files into the CODE directory for the OFA Super Administrator.

This script should prompt for the path, and copy the .EIF files, the STD_
REP.DAT (Standard Report File), as well as setup.txt. It is important to
supply the full path explicitly. Do not use environment variables here.

If you are using NT...

This step is not necessary because you specified the path to the CODE
directory for the OFA Super Administrator during the server installation
step for Budgeting & Planning.

2. Start up Express Administrator, connecting to the Express Server where OFA is
installed.

Note: Before you install these two databases you must set up
Oracle Application Server, Oracle Express Server, and the OFA
Super Administrator database.

Budgeting & Planning Server Installation

Budgeting & Planning Server-Side Installation and Setup 8-7

If you are using UNIX...

Log on using the UNIX Oracle account.

If your server is running more than one instance of Express Server, be sure to
supply the correct UUID string.

3. Using either the File>Open menu option or the Open Database icon, navigate to
the server directory containing the OFA Super Administrator database
(.../super/users/super.db) and attach it read-write.

4. Again using either the File>Open menu option or the Open Database icon,
navigate up one directory level and open the code directory (.../super/code).

To verify that this is the right directory, select the All Files (*.*) filter in the Files
of type: text box. You should see ofaserve.db, ofatools.db and other OFA
database files as well as the ofacdcf.cfg file. You will also see the std_rep.dat
and setup.txt files.

If you are using UNIX...

You should also see the fsbptool.eif and fslang.eif files.

If you are using NT...

You should see the fsbptool.db and fslang.db files.

Do not open a database in this dialog.

5. Click Cancel. On most servers this will set the code directory as the working
directory for the remainder of this Express session.

6. Open the Express command window and the issue the chdir command to see
the current directory setting. If the current Express working directory is not set
to the code directory referred to in the previous step, issue the chdir command
again, supplying the full path.

As an example:

chdir /app/ofa/super/code

Caution: If either UNIX or NT files for the appropriate platform
are missing, or if the std_rep.dat or setup.txt files are missing, you
must find and then copy them into this directory before proceeding.

Budgeting & Planning Server Installation

8-8 Oracle Financial Services Installation and Configuration Guide

Leave the command window open so you can type the commands in the
following steps.

Verify that the current directory is the code folder by issuing the chdir
command without arguments. This returns the current working directory. Also
verify that the STD_REP.DAT file is in the current working directory.

7. Execute the following commands to create or attach the FSBPTOOL and
FSLANG databases:

infile setup.txt
update
call fs.setup

The FS.SETUP program can run for a few minutes. When the program finishes
running, the database list that it reports should include these databases, attached in
this order, followed by the standard Express databases:

SUPER R/W UNCHANGED ...
FSBPTOOL R/W* UNCHANGED ...
FSLANG R/O UNCHANGED ...

* On NT servers, FSBPTOOL is attached R/O.

Once you have completed these steps and installed the FSBPTOOL and FSLANG
databases the next task is to create the Budgeting & Planning structures and data in
the Super Administrator database.

Recovery Procedures
If you encounter any errors in steps 8, 9 or 10, contact Oracle Support Services to
resolve the problem. These steps involve programs that you need to run and errors
indicate problems that you need to correct before continuing with the installation.

After resolving your errors you must reset your system so that you can re-run the
programs in steps 8, 9 and 10. To do this, exit from Express Administrator and
restore the database files that you backed up in step 8 of the "Before Installing
Budgeting & Planning". Repeat steps 2 through 6 of the previous section, then make
sure that the super, FSBPTOOL and FSLANG databases are attached as indicated in
step 7. When you are finished with step 6, complete steps 8 through 10.

Budgeting & Planning Server Installation

Budgeting & Planning Server-Side Installation and Setup 8-9

Creating the Budgeting & Planning Structures and Data
The numbering for the following steps continues the preceding sequence. This
means that the steps in the following sections need to be performed in the same,
uninterrupted Express Administrator session.

Before proceeding to this next step, make sure that the required databases are
attached in the correct order and the correct mode (refer to step 7).
FS.ADDTOSUPER initializes the OFA database environment, attaching the
following three OFA databases in read-only mode: OFASERVE, OFATOOLS, and
OFALANG.

To complete this task, perform the following steps:

8. Run FS.ADDTOSUPER using the following Express command:

call fs.addtosuper

This program can run for several minutes.

If you are using UNIX...

The FS.ADDTOSUPER program calls FS.ALLCOMPILE to compile
programs in the FSBPTOOL database. The output from this step can be
found in a file named allcompile.log in the current server directory after
FS.ADDTOSUPER is finished.

Coordinating Budgeting & Planning Metadata with the FDM Database
This task coordinates Budgeting & Planning metadata in the Super Administrator
database with the FDM database.

To complete this task, perform the following steps:

9. Run FS.SET_META with the OCI connect string as the only argument.

call fs.set_meta (’<user>/<password>@<dbname>’)

Caution: If you must leave Express Administrator and complete
the following steps at a later time, use a new Express Administrator
session. Make sure that the Super Administrator database and the
FSBPTOOL and FSLANG databases are attached exactly as shown
in step 7.

Budgeting & Planning Server Installation

8-10 Oracle Financial Services Installation and Configuration Guide

where user and password are the username and password of the FDM Schema
Owner, and dbname is the TNSNAMES alias for the FDM database instance.

This task sets up a mapping between certain OFSA leaf columns and their
corresponding dimensions in the Budgeting & Planning data model.

If you created a new dimension as part of the preparations for the OFA Super
Administrator database then you need to complete the following step. If you did
not create a new dimension, then proceed to the section entitled Setting Operating
System Privileges in UNIX.

Adding a User-defined Dimension
If you created a user-defined dimension as part of your preparations for the OFA
Super Administrator database you need to complete the following step to make
sure it is incorporated into the Budgeting & Planning data model.

Make sure that the required databases are attached exactly as presented in step 7.
For this step, the OFA database environment established in step 8 is also required. If
the OFASERVE and OFATOOLS databases are not attached, then call the
OFAENV.STARTUP program to initialize this OFA database environment before
preceding with step 10.

10. Call FS.USER_DEF_DIMS, passing the Express name of your user-defined
dimension as the argument. The following command, shown as an example,
uses a user-defined dimension called UDF1.

call fs.user_def_dims (’UDF1’)

Issue an UPDATE command to save your changes.

Setting Operating System Privileges in UNIX
On UNIX servers, it may be necessary to set the file access control list (facl)
privileges for FSBPTOOL and FSLANG databases so that all users can attach to
them. All Budgeting & Planning users should have read-only access to these
databases.

Note: The password is not stored anywhere in OFA or in
Budgeting & Planning.

Budgeting & Planning Server Installation

Budgeting & Planning Server-Side Installation and Setup 8-11

For further information on this subject refer to the chapter entitled “Controlling
Access” in the Oracle Express Server Installation and Configuration Guide for UNIX,
Release 6.3, and the chapter entitled “Installing the Software” in the Oracle Financial
Analyzer Installation and Upgrade Guide, Release 6.3.

The next step ensures that both the FSBPTOOL and FSLANG databases will
automatically attach when the OFA environment is started.

Defining FSBPTOOL as the Primary Custom Database
It is important that both the FSBPTOOL and FSLANG databases attach when OFA
is launched. If these databases do not attach, administrators cannot send Budgeting
& Planning distributions and workstations cannot receive them. These databases
also need to be attached while executing the Budgeting & Planning client or when
running the Budgeting & Planning data movement routines.

To define FSBPTOOL as the primary custom database, complete this step:

1. In the .../code directory for the Super Administrator edit the ofacdcf.cfg
configuration files as follows:

OFALCNAME=fsbptool

Editing the configuration files as shown causes the FSBPTOOL and FSLANG
databases to automatically attach whenever the OFA environment is started. If
you are installing on UNIX, use lower case.

FSBPTOOL is defined as the primary OFA custom database. It contains a
program called LC.STARTUP.PRG, which OFA executes automatically after it
attaches FSBPTOOL. This program attaches the FSLANG database, which is
defined as a secondary custom database. You can modify this program to attach
any other user-defined databases that you want to define as a secondary OFA
custom databases.

Note: The FSBPTOOL database should always be attached in
read-only mode from this point forward. Any Express-based
Budgeting & Planning program, such as for data movement, that
attempts to initialize the OFA database environment will generate
an Express error if FSBPTOOL is attached read-write.

Administering the Budgeting & Planning Databases

8-12 Oracle Financial Services Installation and Configuration Guide

Backing Up the Budgeting & Planning and OFA Databases
Now is a good time to make backup copies of the following database files from the
OFA super administrator’s subdirectories.

Back up the following files:

From the .../super/code directory, back up the fsbptool.db and fslang.db
database files.

From the .../super/users directory, back up the super.db database file.

From the.../super/share directory, back up the ofas.db file.

By saving these database files, you can restore your system to the post-installation
state without having to repeat the server installation process. Save these with a
different name than the prior backups.

Configuring the OFA Subordinate Administrators
Each OFA subordinate administrator owns its own set of OFA subdirectories on the
OFA server. For each subordinate administrator that you have already defined or
that you will define in the future for use with Budgeting & Planning, you must
complete the following steps:

1. Copy fsbptool.db and fslang.db database files from the Super Administrator’s
Code directory into the Code directory for the subordinate administrator.

2. Edit the subordinate administrator’s ofacdcf.cfg file as indicated in the Defining
FSBPTOOL as the Primary Custom Database section.

This ensures that the FSBPTOOL and FSLANG databases automatically attach to
the subordinate administrator and all of the thin client workstations served by the
subordinate administrator every time the OFA environment is active.

Administering the Budgeting & Planning Databases
Now that the Budgeting & Planning database objects have been created in the OFA
Super Administrator database, you need to develop the tiered hierarchy of OFA
workstations and setup the client-side Budgeting & Planning application for end
user access over the web. Refer to the Configuring the Web Listener and Java Client
section of this chapter for detailed information on this installation process.

Then proceed with the steps outlined in “Administering the OFSA and Budgeting &
Planning Databases” chapter in the Oracle Budgeting & Planning Reference Guide
Release 4.5. The steps in this chapter include executing data movement routines to

Configuring the Web Listener and Java Client

Budgeting & Planning Server-Side Installation and Setup 8-13

import data from the OFSA relational database and distributing the Budgeting &
Planning structures to the super shared database and down the tiered OFA user
hierarchy to your end users.

Configuring the Web Listener and Java Client
With this release of Budgeting & Planning end users will log in to the application by
pointing their browser to a starting web page. Budgeting & Planning now requires
that Oracle Application Server and its web listener be configured to handle end
users log in requests. The following section will describe the necessary steps to
configure the web listener.

Testing the Technology Stack
Once you have installed Oracle Application Server, Oracle Express Server, and
Oracle Financial Analyzer Server, verify that the sample Oracle Web Agent
applications work. See the Oracle Web Products Installation Guide for more
information.

Creating the Virtual Directories
Budgeting & Planning requires one virtual directory to hold the Budgeting &
Planning html start page, Budgeting & Planning, and the J-initiator executables. The
process for creating the virtual directories for Budgeting & Planning is very similar
to configuring the virtual directories for Oracle Financial Analyzer Server.

1. As part of your Oracle Financial Analyzer Server installation, you should have
defined OFASTART and OFAWEB virtual directories for Oracle Financial
Analyzer. If you have not completed the setup of the Oracle Financial Analyzer
web client, refer to the Oracle Financial Analyzer Installation and Upgrade
Guide to complete that product’s web installation before attempting to set up
the Budgeting & Planning web client.

Note: If you can not view the sample Oracle Web Agent
applications, you will not be able to log in using BP. Resolve any
issues with the Oracle Web Agent web client before proceeding
with the Budgeting & Planning installation process. See the
“Troubleshooting Tips for Express Web Agent” in Chapter 1,
Installation of the Oracle Express Web Products Installation Guide.

Configuring the Web Listener and Java Client

8-14 Oracle Financial Services Installation and Configuration Guide

2. To create the required virtual directory for Budgeting & Planning, open the
Oracle Application Server Manager by typing the following URL into your
browser:

http://<server name>:8888/

Replace <server name> with the name of your server. The port number 8888 is a
default value. You might have chosen something else during the Oracle
Application Server installation. You will be prompted to type a user name and
password. This is the user name and password given during the installation of
Oracle Application Server.

3. The file system directory can be anywhere on the server you select. The name of
the virtual directory can also be anything you select. However, the template for
the html start page is populated with OBPWEB as the default virtual directory.
Changing the name of the virtual directory in which you plan store the
Budgeting & Planning html start page, and Budgeting & Planning, and
J-initiator executables to anything other than OBPWEB requires that you make
more extensive changes to the html start page template.

4. Once the Oracle Application Server manager has opened, expand (drill down)
on the tree control labeled: HTTP Listeners. You will see a list of listeners that
have been created for the server. Expand (drill down) on the tree control for the
listener that you configured to run Oracle Financial Analyzer. Typically the
WWW listener is used. Now select the Directory page. You should see a list of
actual directory paths mapping to virtual directories.

Verify that the following directories appear in the right column:

/OFASTART/
/OFAWEB/
/oew-install/
/owp/

If any of these directories do not appear, Budgeting & Planning will not run.
Verify that you are looking at the directory page for the particular listener that
Oracle Express Server, Oracle Web Agent, and Oracle Financial Analyzer were
configured to use. If not, open that listener in the Oracle Application Server
Manager.

5. Type the value for the file system directory in which you want to install the
Budgeting & Planning start page, and Budgeting & Planning, and J-initiator
executables in the File-System column on the left side. On the same row, in the
Virtual Directory column on the right side, type:

Configuring the Web Listener and Java Client

Budgeting & Planning Server-Side Installation and Setup 8-15

/OBPWEB/

Accept the default value for the flag: NR. Hit the Apply button at the end of the
page. Oracle Application Manager will now validate the existence of the file
system directory you typed. If you receive an error message verify that the
folder exists and that you have not made any errors.

6. You will now have to stop and start the listener in order for your directory
change to take effect.

Configuring the Timeout Parameters
There are two server time out parameters that could impact an end user. If the user
interface is idle for any amount of time that is greater than either one of the time out
parameters, the end user will see an error message and, if they have not previously
saved their work, it will be lost.

The first parameter is set in the Oracle Application Server Manager. Refer to step 2
in Creating the Virtual Directories section of this chapter. Expand the HTTP
Listeners node, then expand the listener where you configured Express, OFA, and
Budgeting & Planning (the default name of the listener is WWW). Now, select the
server page.

You will see the parameter: “CGI Timeout”. The parameter is measured in seconds,
that is, 600 is equal to 10 minutes. Therefore if you set the Web Listener CGI
Timeout parameter to 600, and the user leaves the application idle for 11 minutes,
the CGI connection will close and the user could possibly lose data. For more
information on setting the time out parameter, see the Oracle Application Server
reference guide and the online help.

The second parameter is set in the Express Instance Manager. Open the Express
instance manager, expand the particular Express Server instance you are using, then
expand the parameters node. Now, select the WebAgent page.

You will see the parameter: Time-out. The parameter is also measured in seconds,
that is, 600 is equal to 10 minutes. Therefore if you set the WebAgent Timeout
parameter to 600, and the user leaves the application idle for 11 minutes, the Web

Note: For questions regarding the Oracle Express Server, Oracle
Web Agent, and Oracle Financial Analyzer web installations, refer
to their respective installation and configuration or upgrade guides.

Configuring the Web Listener and Java Client

8-16 Oracle Financial Services Installation and Configuration Guide

Agent connection will close and the user could possibly lose data. For more
information on setting the time out parameter, see the Oracle Express Server
reference guide and the online help.

Installing the files into the virtual directory
1. Installing the Files

If you are installing on NT...

a. Run the Oracle installer.

b. Under the Oracle Financial Services Web Server Applications 4.5 program
group, select the Oracle Budgeting & Planning 4.5 option.

If you are installing on Sun UNIX...

a. See Chapter 6, "UNIX Server Installation and Configuration"

b. When prompted to make a choice regarding what to install, select B for
Budgeting & Planning Web Client or F for Full Package.

If you are installing on HP or IBM-AIX UNIX...

a. See Chapter 6, "UNIX Server Installation and Configuration".

b. After the server centric software install, change directory to the OFSA_
INSTALL/<ofsa release>/bpweb directory.

c. Execute the install_bpjar script to copy the required HTML and JAR files
into the virtual directory. This script should prompt for a path.

d. When prompted for a path, type the file system directory given for the
virtual directory created earlier. The script will copy the Budgeting &
Planning HTML template, and Budgeting & Planning and J-Initiator
executables to the directory given.

2. When prompted for a path, type the file system directory given for the virtual
directory created earlier. The Oracle Installer will copy the Budgeting &

Caution: End users may lose data if they fail to save their work
before the Web Listener and/or the web agent connections time
out. To prevent data loss, educate your end users about your time
out parameter settings.

Configuring the Web Listener and Java Client

Budgeting & Planning Server-Side Installation and Setup 8-17

Planning HTML template, and Budgeting & Planning and J-initiator
executables to the directory given.

Editing the HTML Start Page
Budgeting & Planning is designed to work with either an Internet Explorer or
Netscape browser. Parameters for each browser need to be defined for your
organization’s environment.

If you plan to support only one browser then the code for that browser should be
edited. You can disregard the code pertaining to the other browser.

If you plan to support both browsers, however, you need to edit the code for both.
Parameter names are slightly different between the two but the portions that need
to be edited will contain the same information.

Following the installation of the files for Budgeting & Planning you need to open
and edit the following two HTML files:

■ obp.html

■ obpjinit.html

Editing HTML Files for Internet Explorer
Open the obp.html file and look for the HTML text between the following points:

Editing the obp.html File
The following parameters should be edited:

Beginning point: <p><object

Ending point: After the path for the Oracle Financial Analyzer shared
database (parameter name: dbdir)

Internet Explorer Edits Purpose/Description

classid= No editing required

WIDTH/HEIGHT No editing required Defines the dimensions of the download
and installation applet for Jinitiator

Configuring the Web Listener and Java Client

8-18 Oracle Financial Services Installation and Configuration Guide

codebase Type the complete URL to
point to the
/obpweb/obpjinit.html
file.

The location /obpweb/obpjinit.html is
already contained in the codebase
parameter. You need to add the preceding
URL text, naming the server and any
additional configuration information,
such as port.

This URL points to the obpjinit.html file,
which contains the download and
installation instructions for the version of
Jinitiator and the link to the Jinitiator
executable that actually runs the
installation process.

This is necessary for loading the correct
version of Jinitiator on the end user’s
computer.

<param NAME= "CODE" VALUE No editing required

<param NAME= "ARCHIVE" VALUE Edit only if the location of
the obp.jar file is different
from the default location

The default location for the obp.jar file is
/obpweb/obp.jar. If you install this file in
a different location, then you need to edit
this parameter.

<param NAME= "type" VALUE No editing required

<param NAME= "service" VALUE Edit only if the service
name for Express Server is
different than the default
name

The default name for the Express service
is ExpSrv630. If you are running multiple
instances of Express Server on your
system and need to specify a different
service name, then that is the name to
type in this parameter.

<param NAME= "oowadir" VALUE Type the location of the
Oracle Applications Server
bin directory

Web-based applications use Oracle
Applications Server. You need to specify
the path/location for this server’s bin
directory.

<param NAME= " helpdir" VALUE Type the location of the
Help files

You need to specify the path (URL) to the
help files for the application. The help
files are found in the doc sub folder of the
virtual directory where the Budgeting &
Planning JAR file is installed. As an
example: obpweb/doc/

<param NAME= "oowaexe" VALUE For UNIX O/S: oowaro

For NT O/S: oowa.exe

The application runs on either UNIX or
NT operating systems. Type the value
appropriate to the operating system you
are using.

Internet Explorer Edits Purpose/Description

Configuring the Web Listener and Java Client

Budgeting & Planning Server-Side Installation and Setup 8-19

Editing the obpjinit File
This file is never displayed by Internet Explorer.

Editing HTML Files for Netscape
Open the obp.html file and look for the HTML text between the following points:

Editing the obp.html File
The following parameters should be edited:

<param NAME= "port" VALUE Type the Web Listener port This parameter defines how the Web
Listener is configured.

<param NAME= "host" VALUE Type the name of the
machine that Express
Server is running on

This is the name of the hardware where
Express Server has been installed.

<param NAME= "user" VALUE Optional parameter Type a value if you want the username in
the login dialog box to default to a
specific name.

If you select this option, each application
end user will require his or her own
HTML page.

<param NAME= "dbdir" VALUE Type the fully qualified
path to the directory
containing the shared
database

This is the directory location of the Oracle
Financial Analyzer shared database.

This directory is not a virtual directory as
used by the Web Listener.

Beginning point: <embed type=...(immediately following <COMMENT>)

Ending point: </embed> (immediately preceding </COMMENT>

Netscape Edits Purpose/Description

type= No editing required

java_CODE= No editing required

java_ARCHIVE= Edit only if the location of
the obp.jar file is different
from the default location

The default location for the obp.jar file is
/obpweb/obp.jar. If you install this file in
a different location, then you need to edit
this parameter.

Internet Explorer Edits Purpose/Description

Configuring the Web Listener and Java Client

8-20 Oracle Financial Services Installation and Configuration Guide

WIDTH/HEIGHT No editing required Defines the dimensions of the download
and installation applet for Jinitiator

service= Edit only if the service
name for Express Server is
different than the default
name

The default name for the Express service
is ExpSrv630. If you are running multiple
instances of Express Server on your
system and need to specify a different
service name, then that is the name to
type in this parameter.

oowadir= Type the location of the
Oracle Applications Server
bin directory

Web-based applications use Oracle
Applications Server. You need to specify
the path/location for this server’s bin
directory.

helpdir= Type the location of the
Help files

You need to specify the path (URL) to the
help files for the application. The help
files are found in the doc sub folder of the
virtual directory where the Budgeting &
Planning JAR file is installed. As an
example: /obpweb/doc

oowaexe= For UNIX O/S: oowaro

For NT O/S: oowa.exe

The application runs on either UNIX or
NT operating systems. Type the value
appropriate to the operating system you
are using.

port= Type the Web Listener port This parameter defines how the Web
Listener is configured.

host= Type the name of the
machine that Express
Server is running on

This is the name of the hardware where
Express Server has been installed.

user= Optional parameter Type a value if you want the username in
the login dialog box to default to a
specific name.

If you select this option, each application
end user will require their own HTML
page.

dbdir= Type the fully qualified
path to the directory
containing the shared
database

This is the directory location of the Oracle
Financial Analyzer shared database.

This directory is not a virtual directory as
used by the Web Listener.

Netscape Edits Purpose/Description

Configuring the Web Listener and Java Client

Budgeting & Planning Server-Side Installation and Setup 8-21

Editing the obpjinit File
Open the obpjinit.html file and look for the following HTML text:

Change server_name to the name of the machine where the jinit11729.exe is
installed.

pluginspage= Type the complete URL to
point to the
/obpweb/obpjinit.html
file.

The location /obpweb/obpjinit.html is
already contained in the codebase
parameter. You need to add the preceding
URL text, naming the server and any
additional configuration information,
such as port.

This URL points to the obpjinit.html file,
which contains the download and
installation instructions for the version of
Jinitiator and the link to the Jinitiator
executable that actually runs the
installation process.

This is necessary for loading the correct
version of Jinitiator on the end user’s
computer.

Netscape Edits Purpose/Description

Configuring the Web Listener and Java Client

8-22 Oracle Financial Services Installation and Configuration Guide

Budgeting & Planning Database Upgrade Process 9-1

9
Budgeting & Planning Database Upgrade

Process

This chapter discusses the procedure for upgrading the Oracle Budgeting &
Planning Express database. This procedure supports upgrading from Budgeting &
Planning Release 4.0 Express databases.

The following topics are covered in this chapter:

■ Installing the Technology Stack

■ Installing the Budgeting & Planning Code Databases and Files

■ Upgrading the Super Administrator’s Personal Database

■ Completing the Database Upgrade Process

Installing the Technology Stack

Before running the Budgeting & Planning Database Upgrade Process (DUP), install
the following components in the stated order:

1. Upgrade the Technology Stack

a. Install Oracle Application server, version 4.0.8.1.

Note: This chapter is intended to supplement, not replace, the
installation and configuration or upgrade guides for supporting
products. Refer to those documents for important information not
covered here.

Installing the Technology Stack

9-2 Oracle Financial Services Installation and Configuration Guide

b. Upgrade Oracle Express Server to version 6.3.0.1 (with patch “OWA630_
P1.exe”)

c. Upgrade Oracle Financial Analyzer Server to version 6.3.0.0 (with patch
“6325_2.exe”).

2. Once Oracle Express Server and Oracle Application Server are installed,
complete the entire Oracle Financial Analyzer upgrade process. For more
information see the Oracle Financial Analyzer Installation and Upgrade Guide.

3. Upgrade the Super Administrator’s personal database and the Super
Administrator’s shared database by installing Financial Analyzer Server
version 6.3.0.0 into the directory where the super databases are located. The
installation for Oracle Financial Analyzer Server version 6.3.0.0 prompts the
user for the path to the super databases. The path that the install routine is
looking for is the parent directory for the users and the shared directories. For
example, if the super database is located in the C:\OFAPROD1\SUPER\USERS
directory, the path the install routine looks for “C:\OFAPROD1\SUPER”.

When the Oracle Universal Installer installs Financial Analyzer Server, it
overwrites the Oracle Financial Analyzer code databases and regenerates all the
configuration files. It does not overwrite the super or the shared databases.

If there are sub-administrators, they also need the new version of Oracle
Financial Analyzer Server to be installed.

Testing the technology stack
Follow the steps in the Oracle Financial Analyzer Installation and Upgrade Guide to
configure Oracle Financial Analyzer web client. Log into the Oracle Financial

Note: When you install Oracle Application Server before
upgrade/re-installing Oracle Express Server, the Oracle Express
Server installation automatically configures the web listener
included with Oracle Application Server. See the Oracle Express
Server Web Products Installation Guide for more information, or if
you need to configure the web listener manually.

Note: If the server is NT, use \ (back slashes) when you are
entering the path in the Oracle Universal Installer rather than using
the Oracle Express Server / (forward slash) convention. Also, omit
any trailing slash.

Installing the Budgeting & Planning Code Databases and Files

Budgeting & Planning Database Upgrade Process 9-3

Analyzer web client. If you are unable to log into Oracle Financial Analyzer using
the web client, contact Oracle Financial Analyzer technical support before
proceeding with the Budgeting & Planning Database Upgrade Process.

Installing the Budgeting & Planning Code Databases and Files
Rename the existing FSBPTOOL and FSLANG databases in the code folder of your
super administrator’s Oracle Financial Analyzer installation for backup purposes
and so that you do not have a name conflict when the new databases are created.

If you are using NT…
1. Run the Oracle Installer.

2. Under the Oracle Financial Services Applications Servers 4.5 program group,
select the Oracle Budgeting & Planning Server 4.5 option.

3. When prompted for a path, enter the path to the super administrator. The
Oracle Installer then copies the two code databases FSBPTOOL and FSLANG,
the setup.txt file, and the std_rep.dat (standard reports) file into the code folder.

The path that the install routine is looking for is the parent directory for the
users and the shared directories. For example, if the super database is located in
the C:\OFAPROD1\SUPER\USERS directory, the path the install routine looks
for C:\OFAPROD1\SUPER.

If you are using UNIX...
1. Log onto the server using the Oracle account.

2. Change directory to the OFSA_INSTALL/<ofsa release>/ofsbpsrv directory.

3. Execute the install_eif script to copy the required Express export and setup files
into the CODE directory for the OFA Super Administrator.

Note: If you cannot log in to your database using the Oracle
Financial Analyzer web client, you cannot log in using Budgeting &
Planning. Resolve any issues with the Oracle Financial Analyzer
web client before attempting to run the Budgeting & Planning
Database Upgrade Process.

Upgrading the Super Administrator’s Personal Database

9-4 Oracle Financial Services Installation and Configuration Guide

This script should prompt for the path, and copy the .EIF files, the STD_
REP.DAT Standard Report File), as well as setup.txt. It is important to supply
the full path explicitly. Do not use environment variables here.

Upgrading the Super Administrator’s Personal Database
1. Open Express Administrator. From the file menu select the open option, and

attach the super’s personal database read/write.If it exists in the super ’s
personal database, delete the program FS.SETUP. From the Express Command
window, verify that the super’s personal database is attached first, using the
DATABASE LIST function. If it is not, then issue DATABASE ATTACH SUPER
FIRST where super is the name of the super’s personal database.

2. Now use the CHDIR and CHDRIVE commands to change the Express Working
directory to be the code folder associated the super’s personal and shared
databases. Reissue the CHDIR command with no arguments to verify that the
current directory is actually the Super Administrator’s code directory.

3. If the directory is not the directory you would expect, use the CHDRIVE
command to change the current drive to the location of the Super
Administrator’s CODE directory. Reissue the CHDIR command with no
arguments to verify that the current directory is actually the Super
Administrator’s CODE directory.

4. Executing the Budgeting & Planning Database Upgrade Process

If you are using NT…

a. Issue the following Express Commands:

b. In order for OFAENV.STARTUP to successfully run, FSBPTOOL must be
attached read/only. From the Express Command window, attach
FSBPTOOL read/only and run OFAENV.STARTUP by issuing the following
Express commands:

DATABASE ATTACH FSBPTOOL RO
CALL OFAENV.STARTUP
DATABASE LIST

c. Verify that super’s personal database is attached read/write first, that
FSBPTOOL and FSLANG are attached read/only, and that the Oracle
Financial Analyzer code databases are attached read/only as well. If
FSLANG is not attached, verify the OFACDCF.CFG file has fsbptool listed
as the primary custom database. If it does not, update the OFACDCF.CFG
file and re run OFAENV.STARTUP.

Upgrading the Super Administrator ’s Personal Database

Budgeting & Planning Database Upgrade Process 9-5

d. Now call the upgrade program

CALL FS.UPGRADE

If you are using UNIX…

a. Issue the following Express Commands:

INFILE SETUP.TXT
CALL FS.SETUP
UPDATE
DATABASE DETACH FSBPTOOL
DATABASE DETACH FSLANG.

The INFILE command creates (or recreates) the FS.SETUP program in the
super database. Running the FS.SETUP program creates the new
FSBPTOOL and FSLANG version 4.5 databases. The UPDATE command
writes the new databases to the disk, and the detaching commands set the
environment for the rest of the Budgeting & Planning Database Upgrade
Process

b. In order for OFAENV.STARTUP to successfully run, FSBPTOOL but be
attached read/only. From the Express Command window, reattach
FSBPTOOL read/only and run OFAENV.STARTUP, by issuing the following
Express commands:

DATABASE ATTACH FSBPTOOL RO
CALL OFAENV.STARTUP
DATABASE LIST

c. Verify that the super’s personal database is attached read/write first, that
FSBPTOOL and FSLANG are attached read/only and that the Oracle
Financial Analyzer code databases are attached read/only as well. If
FSLANG is not attached, verify the OFACDCF.CFG file has fsbptool listed
as the primary custom database. If it does not, update the OFACDCF.CFG
file and re run OFAENV.STARTUP.

If you have installed OFA on UNIX, be sure to use lower case.

d. In order for FS.UPGRADE to successfully run, FSBPTOOL must be attached
read/write. From the Express command window, detach FSBPTOOL and
reattach it read/write before running FS.UPGRADE, by issuing the
following Express commands:

Completing the Database Upgrade Process

9-6 Oracle Financial Services Installation and Configuration Guide

DATABASE DETACH FSBPTOOL
DATABASE ATTACH FSBPTOOL RW
CALL FS.UPGRADE

Your super personal database is now upgraded to version 4.5 of Budgeting &
Planning. You should see a message that informs you that the upgrade was
successful.

Completing the Database Upgrade Process
Once the super administrator’s personal database has been upgraded, you need to
upgrade the super administrator’s shared database and any sub administrator’s
personal and shared databases.

1. Log into the super administrator’s personal database using the Oracle Financial
Analyzer client. From the manage menu, first select distribution, then the
distribute structure option. In the distribute structure interface select the Auto
DUP item. Using the Add action, distribute the dimension and its seeded
dimension value to all sub administrator users.

2. Submit the task to the task processor and then launch the task processor if it is
not already running. Once the task has been processed, log into each of the
subordinate administrator’s personal databases to process the distribution. If
you have additional levels of subordinate administrators, repeat the
distribution of the Auto DUP item to all lower levels of subordinate
administrators.

Note: In this release of Budgeting & Planning, users have Read
Only access to the shared database. Existing Budget users should
submit any data to the shared database. Create any new users as
External Users. See the Oracle Budgeting & Planning Reference Guide
for more information about Oracle Financial Analyzer users.

Caution: Do not attempt to distribute any other objects with the
Auto DUP item.

Completing the Database Upgrade Process

Budgeting & Planning Database Upgrade Process 9-7

3. Once the Auto DUP process has run distribute the Non-OFA Budgeting &
Planning Database Objects and the One-way Data Custom Distribution objects
to the shared database and any subordinate administrators.

Completing the Database Upgrade Process

9-8 Oracle Financial Services Installation and Configuration Guide

FDM Database Installation 10-1

10
FDM Database Installation

This chapter provides information on installing the Oracle Financial Data Manager
(FDM) database. The specific topics covered in this chapter include:

■ Installing the Oracle Applications

■ Setting up the Physical Structure of the Oracle Database

■ Configuring the FDM Database

■ Creating the FDM Database

You can find additional information on installing and configuring the Oracle
database for the Oracle Financial Services Applications (OFSA) group of
applications in the reference and installation guides associated with the Oracle
database and applications you are installing.

Installing the Oracle Applications
This section addresses Oracle application installation issues as they pertain to the
OFSA group of applications. Refer, also, to the platform-specific installation guide
provided by Oracle for further, detailed installation instructions.

Setting up the Physical Structure of the Oracle Database

10-2 Oracle Financial Services Installation and Configuration Guide

Installing the Oracle Database-related Components
Following is a list of Oracle-related components required for a minimum
installation. You can find these components on the media distributed with the
Oracle RDBMS software.

■ Oracle Installer

■ Oracle8i Server‡

■ PL/SQL‡

■ Oracle NET8‡

■ SQL*Plus‡

■ Oracle Server Manager: Line Mode

The following is needed if you are upgrading from Oracle7

■ Migration Utility

Checking the Installation for Errors or Failures
Check the installation log files for any errors or failures that might have occurred
during the installation process. If more detailed information is necessary, refer to the
reference guides associated with the Oracle applications you are installing.

Setting up the Physical Structure of the Oracle Database
The physical structure of the Oracle database includes the directory structure,
parameter files, datafiles, control files and redo logs. Each of these components are
described in this section.

Note: For components marked with the following notation (‡),
you need the appropriate version that is shipping with Oracle
8.1.6.x

Setting up the Physical Structure of the Oracle Database

FDM Database Installation 10-3

Structure Files
The physical structure of the Oracle database is contained in the three file categories
listed and described in the following table.

Parameter Files
The initialization parameter file is a text file that containing a list of parameters and
a value for each parameter. The file should be written in your default character set.
Specify values in the parameter file that reflect your installation.

Parameter files contain the configuration parameters for the Oracle database.
Setting up parameter files are a prerequisite to starting the Oracle instance.

There are two Oracle parameter files. In the following list, <dbname> is the
database name you have selected and need to replace. The dbname is also referred
to as the SID.

init<dbname>.ora
config<dbname>.ora

File Type Contents

 Datafiles The datafiles are physical files containing all of the database
data. These files include the physical database structures such as
tables and indexes. Your database can have one or more
datafiles.

 Redo Log Files The redo log files contain the redo log, which records and retains
all changes made to the data. Should a system failure prevent
modified data from being written to the datafiles, the changes
can be obtained from the redo log so that work is not lost. Your
database can have one or more redo log files.

 Control Files Control files record the physical structure of the database, such
as the database name, the names and locations of the datafiles
and redo log files and the time stamp of the database creation.

Your database should have at least two control files. However,
three is recommended.

Setting up the Physical Structure of the Oracle Database

10-4 Oracle Financial Services Installation and Configuration Guide

Oracle parameter files contain information and instructions such as those in the
following list:

■ Database name

■ Memory capacity assigned to the System Global Area (SGA)

■ Instructions for handling filled redo log files

■ Name and location of the control file(s)

■ Names of private rollback segments in the database

■ Parameters that name things (such as files)

■ Parameters that set limits (such as maximums)

■ Parameters that affect capacity (called variable parameters)

An example of a variable parameter is a DB_BLOCK_BUFFERS parameter,
which specifies the number of data blocks allocated for the SGA in the
computer’s memory.

Required Parameters for OFSA
The FDM database requires the following initialization parameters:

■ compatible

FDM requires that this parameter is set to 8.1.6 or higher.

COMPATIBLE lets you use a new release, while at the same time guaranteeing
backward compatibility with an earlier release. This ability is helpful in case it
becomes necessary to revert to the earlier release.

■ dml_locks

FDM requires that this parameter is set to at least 200.

A DML lock is a lock obtained on a table that is undergoing a DML operation
(insert, update, delete). DML_LOCKS specifies the maximum number of DML
locks--one for each table modified in a transaction. The value should equal the
grand total of locks on tables currently referenced by all users. For example, if
three users are modifying data in one table, then three entries would be
required. If three users are modifying data in two tables, then six entries would
be required.

■ job_queue_processes

FDM requires that this parameter is set to at least 1 (maximum value is 36).

Setting up the Physical Structure of the Oracle Database

FDM Database Installation 10-5

JOB_QUEUE_PROCESSES specifies the number of SNPn job queue processes
per instance (SNP0, ... SNP9, SNPA, ... SNPZ). Job queue processes process
requests created by DBMS_JOB.

■ max_enabled_roles

FDM requires that the max_enabled_roles parameter is set to at least 60. This is
because the FDM database creation and database upgrade processes create a
number of seeded roles in the database instance.

MAX_ENABLED_ROLES specifies the maximum number of database roles that
users can enable, including roles contained within other roles.

■ open_cursors

Specifies the maximum number of open cursors (context areas) a session can
have at once. This constrains a session from opening an excessive number of
cursors. The FDM Administration application requires 100 as a minimum,
however Oracle recommends a value of 200 to accommodate OFS applications
multiprocessing.

Performance Parameters for OFSA
You can use initialization parameters to do the following:

■ Optimize performance by adjusting memory structures.

Example: The number of database buffers in memory

■ Set some database-wide defaults.

Example: How much space is initially allocated for a context area when it is
created

■ Set database limits.

Example: The maximum number of database users

■ Specify names of directories.

Examples: BACKGROUND_DUMP_DEST, USER_DUMP_DEST and
CORE_DUMP_DEST

Parameters that should be evaluated to enhance the performance of the OFSA
database include the ones that follow. Refer to the Oracle8i Reference for more
information on these parameters.

Setting up the Physical Structure of the Oracle Database

10-6 Oracle Financial Services Installation and Configuration Guide

■ shared_pool_size

Specifies the size of the shared pool in bytes. The shared pool contains shared
cursors and stored procedures. Larger values improve performance in
multi-user systems.

■ shared_pool_reserved_size

This is shared pool space that is reserved for large, contiguous requests for
shared pool memory. This parameter, along with the
SHARED_POOL_RESERVED_MIN_ALLOC parameter, can be used to avoid
performance degradation in the shared pool in situations where pool
fragmentation forces Oracle to search for any free chunks of unused pool to
satisfy the current request.

■ shared_pool_reserved_min_alloc

Controls the allocation of reserved memory. Requests for memory allocations
greater than the value of the parameter allocate space from the reserved list if
the memory chunk was not found on the shared pool free list.

■ db_block_buffers

This is the data cache. The larger the cache, the more data Oracle can hold in
memory. A large data cache is desirable because it reduces I/O calls to the
operating system. Increasing the data cache keeps queried data in memory
longer, which reduces the I/O load.

You can determine the total buffer cache available by using the following
formula: DB_BLOCK_BUFFERS * DB_BLOCK_SIZE.

■ cursor_space_for_time = true

When set to true, this parameter causes shared SQL areas to be pinned in the
shared pool. The shared SQL area is not aged-out when there is an open cursor
that references the shared SQL. This parameter also causes the private SQL area
allocated to each cursor, to be maintained in the library cache. Since Oracle
must scan the library cache to determine if the SQL statement is present when
set to true, then this check is not needed.

Setting up the Physical Structure of the Oracle Database

FDM Database Installation 10-7

You should set this parameter to true only if the shared pool is large enough to
hold all open cursors simultaneously.

■ db_block_size

Specifies the size, in bytes, of Oracle database blocks. The typical value for
OFSA is 16K. The DB_BLOCK_SIZE should be a factor of the operating system
block size.

■ db_file_multiblock_read_count

This parameter is used for multi-block I/O and specifies the maximum number
of blocks read in one I/O operation during a sequential scan. The total number
of I/Os needed to perform a full table scan depends on factors such as the
following:

■ The size of the table

■ The multi-block read count

■ Whether parallel query is being used for the operation

■ db_block_lru_latches

Specifies the upper bound of the number of LRU latch sets. Set this parameter
to a value equal to the desired number of LRU latch sets. Oracle decides
whether to use this value or reduce it based on a number of internal checks. If
the parameter is not set, Oracle calculates a value for the number of sets.

■ log_buffer

Specifies the amount of memory, in bytes, that is used when buffering redo
entries to a redo log file. Redo log entries contain a record of the changes that
have been made to the database block buffers. The LGWR process writes redo
log entries from the log buffer to a redo log file.

■ log_checkpoint_interval

Specifies the frequency of checkpoints in terms of the number of redo log file
blocks that are written between consecutive checkpoints. Regardless of this
value, a checkpoint always occurs when switching from one online redo log file
to another. If the value exceeds the actual redo log file size, checkpoints occur

Setting up the Physical Structure of the Oracle Database

10-8 Oracle Financial Services Installation and Configuration Guide

only when switching logs. The checkpoint frequency is one of the factors that
impacts the time required for the database to recover from an unexpected
failure.

■ sort_area_size

Specifies the maximum amount, in bytes, of Program Global Area (PGA)
memory to use for a sort. After the sort is complete and all that remains to do is
to fetch the rows, the memory is released down to the size specified by SORT_
AREA_RETAINED_SIZE. After the last row is fetched, all memory is freed. The
memory is released back to the PGA, not to the operating system.

Increasing SORT_AREA_SIZE size improves the efficiency of large sorts.
Multiple allocations never exist; there is only one memory area of SORT_
AREA_SIZE for each user process at any time.

If more space is required, temporary segments are created on the disk.

■ disk_asynch_io

This parameter can be used to control whether I/O to datafiles, control files and
log files are asynchronous. If a platform supports asynchronous I/O to disk, it
is recommended that this parameter be left at the default setting. However, if
the asynchronous I/O implementation is not stable, this parameter can be set to
FALSE to disable asynchronous I/O. If a platform does not support
asynchronous I/O to disk, this parameter has no effect.

■ enqueue_resources

Sets the number of resources that can be concurrently locked by the lock
manager. The default value of ENQUEUE_RESOURCES is derived from the
SESSIONS parameter and should be adequate, as long as DML_LOCKS + 20 are
less than ENQUEUE_RESOURCES.

■ parallel_max_servers

Caution: Frequent checkpointing can cause excessive I/O and
writes to the disk.

Setting up the Physical Structure of the Oracle Database

FDM Database Installation 10-9

Specifies the maximum number of parallel query servers or parallel recovery
processes for an instance. Oracle increases the number of query servers, as
demand requires, from the number created at instance startup, up to this value.
Proper setting of this parameter ensures that the number of query servers in use
does not cause a memory resource shortage during periods of peak database
use.

If PARALLEL_MAX_SERVERS is set too low, some queries may not have a
query server available to them during query processing. Setting PARALLEL_
MAX_SERVERS too high leads to memory resource shortages during peak
periods, which can degrade performance.

■ parallel_min_servers

Specifies the minimum number of query server processes for an instance. This
is also the number of query server processes Oracle creates when the instance is
started.

■ optimizer_percent_parallel

Specifies the amount of parallelism that the optimizer uses in its cost functions.
The optimizer percent parallel default of 0 means that the optimizer selects the
best serial plan. A value of 100 means that the optimizer uses each object’s
degree of parallelism in computing the cost of a full table scan operation. Low
values favor indexes, and high values favor table scans.

Packages
Pinning the large packages in the following list reduces fragmentation in the shared
pool. The following is provided in a script called pin.sql and is located in OFSA_
INSTALL/dbs/<ofsa release>/master. You need to edit this script for your
particular database.

Run this script each time you start up your database.

REM * This script pins frequently used packages in the shared pool

Note: In this chapter, OFSA_INSTALL is the convention used to indicate
where the OFSA group of applications is installed in your directory
structure.

Setting up the Physical Structure of the Oracle Database

10-10 Oracle Financial Services Installation and Configuration Guide

 connect internal
 execute dbms_shared_pool.keep(’DBMS_STANDARD’);
 execute dbms_shared_pool.keep(’DBMS_SHARED_POOL’);
 execute dbms_shared_pool.keep(’DBMS_OUTPUT’);
 execute dbms_shared_pool.keep(’STANDARD’);
 execute dbms_shared_pool.keep(’DBMS_UTILITY’);
 execute dbms_shared_pool.keep(’<dbowner>.OFSA_SQL’);
 execute dbms_shared_pool.keep(’<dbowner>.OFSA_DBA’);

Objects can be manually pinned in the shared pool in cases where application code
is being used over and over.

Database Tablespaces and Datafiles
A database is divided into logical storage units called tablespaces, which are used to
group logical structures together. Tablespaces are made up of one or more files that
are located either on UNIX file systems or on RAW devices.Tablespaces are used to:

■ Control disk space allocation for database data and indexes

■ Assign specific space quotas for database users

■ Control availability of data by taking individual tablespaces online or offline

■ Perform partial database backup or recovery operations

■ Allocate data storage across devices to improve performance.

FDM Tablespaces
A tablespace consists of one or more datafiles. The FDM database creation and
database upgrade processes require a minimum of two tablespaces with the naming
conventions listed in the following table.

Caution: Your FDM database must have a minimum of two
tablespaces, using the naming conventions in the following table

Tablespace Name Contents and Usage

 DATA_TS Location of the OFSA tables and data necessary for Upgrade
Process

Setting up the Physical Structure of the Oracle Database

FDM Database Installation 10-11

You also need to define a temporary tablespace and a rollback tablespace. The
recommended naming convention for these tablespaces is TEMP_TS and
ROLLBACK_TS, respectively.

Instrument tables such as MORTGAGES, DEPOSITS, CONSUMER_LOAN,
COMMERCIAL_LOAN or LEDGER_STAT should be moved from the DATA_TS to
their own tablespaces. You should use table partitioning as a method of placing
segments of a table’s data into different tablespaces. See the section entitled "Table
and Index Partitioning" in this chapter for additional details.

FDM Datafiles
Examples of the naming conventions for datafiles associated with each of the
required tablespaces are provided in the following table.

Follow the numbering convention in this example for multiple datafiles within
tablespaces. The number of datafiles for a tablespace can vary from database to
database.

Datafile Location

The location of the datafiles for your tablespaces varies based on many factors,
including whether your database is on raw devices or file systems.

If the database is on raw devices the datafiles are defined by a logical volume
management program such as Volume Manager and must be mapped into logical
volumes.

If the database is on file systems, the datafiles are located in directories that can use
the following naming conventions: /db/d02/oradata/<dbname>,

 INDEX_TS Location of the OFSA indexes necessary for Upgrade Process

Tablespace Name Naming Convention Example

 DATA_TS <dbname>_DATA_01.DBF

<dbname>_DATA_02.DBF

 INDEX_TS <dbname>_INDEX_01.DBF

<dbname>_INDEX_02.DBF

Tablespace Name Contents and Usage

Setting up the Physical Structure of the Oracle Database

10-12 Oracle Financial Services Installation and Configuration Guide

/db/d03/oradata/<dbname>, /db/d04/oradata/<dbname>, and so forth. The
datafiles are located in the oradata/<dbname> subdirectory.

Table and Index Partitioning
Data partitioning is a new feature of Oracle8, designed to enable users to
decompose tables into smaller and more manageable pieces called partitions. All
partitions of a table or index have the same logical attributes, although their
physical attributes can be different. For example, all partitions in a table share the
same column and constraint definitions; and all partitions in an index share the
same index columns. However, storage specifications and other physical attributes
such as PCTFREE, PCTUSED, INITRANS, and MAXTRANS can vary for different
partitions of the same table or index.

The table or index can be divided into partitions, based on a range of key values.
Each partition can be operated on independently. For example, a table partition can
be recovered, undergo DML (insert, update, delete) transactions, be analyzed and
so forth without affecting the other partitions.

Each partition is stored in a separate segment. You can also store each partition in a
separate tablespace, which has the following advantages:

■ I/O load balancing by mapping partitions to disk drives

■ Performance improvements using partition elimination

■ Containing the impact of damaged data

■ Independent backup and recovery of each partition

The primary benefit of the partitioning option is ease of maintenance for large tables
and improved reliability, which is important for both online transaction processing
(OLTP) and data warehousing environments. However, performance improvement
using partition elimination is also an important benefit of partitioning.

Partition elimination occurs when the optimizer selects an execution plan that skips
partitions not needed for the query. This partition elimination takes place at run
time, when the execution plan references all partitions. Partition elimination
provides a performance benefit by reducing the number of partitions that must be
accessed to satisfy a query.

Table partitioning can be useful in OFSA by partitioning the primary transaction
(instrument) tables. Examples of these tables include DEPOSITS, LEDGER_STAT
COMMERCIAL_LOAN, CONSUMER_LOAN, MORTGAGES and CREDIT_CARD.

You must identify a partition key and a range of values on which to partition for
each table. These key ranges represent the less-than-values to be used to partition

Setting up the Physical Structure of the Oracle Database

FDM Database Installation 10-13

the data. To create a partition table or index use the new enhanced create table and
create index syntax to specify the partition key(s) and range of values for each
partition.

Partitioning Example
CREATE TABLE "DEPOSITS" ("IDENTITY_CODE" NUMBER(10, 0) NOT NULL
ENABLE, "ID_NUMBER" NUMBER(25, 0) NOT NULL ENABLE, "GL_
ACCOUNT_ID" NUMBER(14, 0) NOT NULL ENABLE, "ORG_UNIT_ID"
NUMBER(14, 0) NOT NULL ENABLE, "COMMON_COA_ID" NUMBER(14, 0)
NOT NULL ENABLE, "DETAIL_RECORD" NUMBER(5, 0), "AS_OF_DATE" DATE
NOT NULL ENABLE,...)

PARTITION BY RANGE (PRODUCT_ID)

(PARTITION DEPOSIT_P1 VALUES LESS THAN (’211146’)

 TABLESPACE DEPOSIT01,

PARTITION DEPOSIT_P2 VALUES LESS THAN (’213083’)

 TABLESPACE DEPOSIT02,

PARTITION DEPOSIT_P3 VALUES LESS THAN (’221042’)

 TABLESPACE DEPOSIT03,

PARTITION DEPOSIT_P4 VALUES LESS THAN (’222253’)

 TABLESPACE DEPOSIT04,

PARTITION DEPOSIT_P5 VALUES LESS THAN (’262021’)

 TABLESPACE DEPOSIT05,

PARTITION DEPOSIT_P6 VALUES LESS THAN (’262101’)

 TABLESPACE DEPOSIT06,

PARTITION DEPOSIT_P7 VALUES LESS THAN (MAXVALUE)

 TABLESPACE DEPOSIT07)

PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOLOGGING

STORAGE (INITIAL 25600000 NEXT 25600000 MINEXTENTS 1 MAXEXTENTS
UNLIMITED PCTINCREASE 0 FREELISTS 4 FREELIST GROUPS 1 BUFFER_POOL
DEFAULT);

Setting up the Physical Structure of the Oracle Database

10-14 Oracle Financial Services Installation and Configuration Guide

CREATE INDEX "DEPOSITS_201" ON "DEPOSITS" ("TP_COA_ID", "ORG_UNIT_
ID") local

(partition deposits_index_201_p1 tablespace deposit_index01,

partition deposits_index_201_p2 tablespace deposit_index02,

partition deposits_index_201_p3 tablespace deposit_index03,

partition deposits_index_201_p4 tablespace deposit_index04,

partition deposits_index_201_p5 tablespace deposit_index05,

partition deposits_index_201_p6 tablespace deposit_index06,

partition deposits_index_201_p7 tablespace deposit_index07)

PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE (INITIAL 7168000 NEXT
104800 MINEXTENTS 1 MAXEXTENTS UNLIMITED PCTINCREASE 0 FREELISTS
4 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) nologging;

You should identify a key range that helps balance partitions into evenly sized
segments. It is also helpful if the partition key is the same key used to retrieve the
data. This may not always be possible but should be considered.

 There are also several restrictions to using partitions, including those listed in the
following table.

Restriction Explanation

Datatype Restrictions At this time partitioned tables cannot have any columns with
LONG or LONG RAW datatypes, LOB datatypes (BLOB, CLOB,
NCLOB, or BFILE) or object types.

DATE datatype If a table or index is partitioned on a column that has the DATE
datatype and if the NLS date format does not specify the century
with the year, the partition descriptions must use the TO_DATE
function to specify the year completely. Otherwise, you cannot
create the table or index.

Clusters cannot be
partitioned

(None)

Optimizer Restrictions Oracle8 COST BASED Optimizer supports partitions. Rule Base
Optimizer is not partition aware and does not support partition
elimination. Any application using Rule Base Optimizer does
not gain any performance benefits from using partitioned tables
or indexes. However, these applications can make use of ease of
administration and availability features of partitioned tables.

Configuring the FDM Database

FDM Database Installation 10-15

Configuring the FDM Database
This section discusses specific configuration tasks you need to complete to create a
well-organized area that is compliant for Optimal Flexible Architecture (OFA).

Creating the Working Directories
You need to create the working directories for the Oracle database. From the
$ORACLE_BASE/admin directory, create the following database directory:

mkdir <dbname>

Under the new <dbname> directory, create the following subdirectories:

bdump
bkup
cdump
create
pfile
udump
adhoc

Setting init Parameters
Complete the steps in this section to modify the init parameters. A generic version
of the init.ora file is located in the $ORACLE_HOME/dbs directory. You can either
copy this file and edit it or create your own.

The size parameters noted in these steps are recommended settings, some of which
are defined as minimum recommended settings. You may need to make further
modifications to these setting based, on your preferences or the complexity of your
system.

1. From the $ORACLE_BASE/admin/<dbname>/pfile directory, edit or create the
following file:

init<dbname>.ora

Physical Restrictions Partitioned tables cannot span multiple databases. They must be
within one instance.

For more information refer to the Oracle8i Server documentation
and Chapter 11, "Upgrading from OFSA 3.5/4.0" in this manual.

Restriction Explanation

Creating the FDM Database

10-16 Oracle Financial Services Installation and Configuration Guide

2. Add the SORT_AREA_SIZE parameter and set it to at least 5 MB.

This parameter is not included in the default init.ora file.

3. Increase the SHARED_POOL_SIZE to at least 5 MB.

4. Add the DB_BLOCK_SIZE parameter and set it to at least 16384.

This parameter is not included in the default init.ora file.

If your platform does not support a 16K block size, use an 8192 block size
instead.

5. Change all occurrences of the instance name (<dbname>) to the name you have
chosen.

6. Add additional Oracle parameters or other settings as required.

FDM has required values for the following parameters in the init<dbname>.ora.
Refer to the Required Parameters for OFSA for details:

■ COMPATIBLE

Minimum value 8.1.6.

■ DML_LOCKS

Minimum value 200.

■ MAX_ENABLED_ROLES

Minimum value 60.

■ OPEN_CURSORS

Minimum value 500.

7. Save the file.

8. Create a symbolic link in the $ORACLE_HOME/dbs directory to the
init<dbname>.ora file by entering the following information:

ln -s $ORACLE_BASE/admin/<dbname>/pfile/init<dbname>.ora
$ORACLE_HOME/dbs/init<dbname>.ora

Creating the FDM Database
Create the FDM database instance by either modifying the creation scripts included
with the Oracle installation or modifying the script included with the FDM
installation. The steps to create an FDM database are described as follows:

Creating the FDM Database

FDM Database Installation 10-17

1. Modifying the FDM Database Scripts

2. Creating the Oracle Java VM

3. Creating the FDM Schema

4. Completing the Procedure

Modifying the FDM Database Scripts
The cr_db.sql script is in the following location: OFSA_INSTALL/dbs/<OFSA
release>/master. If you use this script, you need to modify the following items:

Before you begin creating the FDM database instance verify that your environment
variable, $ORACLE_SID, points to the correct instance.

Go to the $ORACLE_BASE/admin/<dbname>/create directory and complete the
following steps to create the database instance.

1. Log in as a valid UNIX account that is part of the DBA group, or log in as the
following UNIX account: oracle.

2. Enter the following command to start the Server Manager utility:

svrmgrl

3. Connect to the Oracle database using the following command.

connect internal;

4. Start the database without mounting it, using the following command.

startup nomount;

5. Spool to the following file using the following command.

Script Component Modification

Dbname Rename to the name you have chosen for the database.

Redo log files Identify the name, size and location of each of these files.

Tablespaces Create additional tablespaces, as needed.

Datafiles Identify the name, size and location of the datafile(s) for each
tablespace.

Rollback segments Identify the number of rollback segments and the names and sizes for
each, and set the optimal size appropriately.

Creating the FDM Database

10-18 Oracle Financial Services Installation and Configuration Guide

spool cr_db.log

6. Execute the following create script.

@OFSA_INSTALL/dbs/<OFSA release>/master/cr_db.sql

Creating the Oracle Java VM
FDM requires that the database instance is initialized for the Java VM. To complete
this initialization, you must load the initjvm.sql package into your database before
running any of the FDM scripts to create the database schema.

The Oracle Java VM package is found in the following location:

$ORACLE_HOME/javavm/install

To load this package into the database, go to the directory location and login to
SQL*Plus as the SYS user. Then type the following:

<SQL> spool initjvm.log
<SQL> @initjvm.sql

Review the designated log file after the script is complete for any errors.

Creating the FDM Schema
The following topics are described in this section:

■ Functional Currency

■ Running the Install Procedure

Functional Currency
The FDM database creation procedure prompts for a Functional Currency.
Functional Currency is defined as “the currency of the primary economic
environment in which an entity conducts its business”. In a single currency
environment, you need only specify your currency code. In a multiple currency
environment, specify the currency used by the parent organization for financial
statement reporting.

The FDM database creation process sets all tables with the ISO_CURRENCY_CD
column to default to the specified Functional Currency whenever a value is not
explicitly designated during an insert.

Creating the FDM Database

FDM Database Installation 10-19

Running the Install Procedure
Before you begin creating the FDM schema verify that your environment variable,
$ORACLE_SID, points to the correct instance.

Go to the OFSA_INSTALL/dbs/<OFSA release> directory and complete the steps
in this section to create the OFSA schema. This path is referred to as the Install Home
Directory in this chapter.

The master/create.sql script file (generated by the generate_install.sql script)
contains the CREATE TABLE and CREATE INDEX statements for all of the OFSA
tables and indexes. It is run from the master/install script in the steps that follow.

1. In UNIX, change directory to OFSA_INSTALL/dbs/<OFSA release>.

2. Log in to the SQL*PLUS utility as SYS by entering the following command line
entry:

sqlplus sys/<password>

Note that when logging into SQL*Plus you must do so as a local connection.
Using the syntax designates a local connection to the database specified in the
ORACLE_SID environment variable. This is in contrast to logging into
SQL*Plus using the @ option to specify the database. This requirement exists
because the Database Creation scripts create additional local database
connections during execution.

3. Run the cr_owner.sql script by entering the following command line entry:

@master/cr_owner

Note: Every table and index definition in the create.sql script has
the same default storage parameters. You should modify these
parameters to meet your tablespace schema and sizing expectations

Note: Included with the FDM data model are default Instrument
and Account tables. The FDM database creation process does not
create default tables that have the same name as existing
user-defined objects within the FDM Schema. Refer to the Oracle
Financial Data Manager Data Dictionary for information on the
default Instrument and Account tables provided with the FDM
data model.

Creating the FDM Database

10-20 Oracle Financial Services Installation and Configuration Guide

When prompted, enter the username you have chosen for your OFSA schema.
The cr_owner.sql script creates the schema with the password that is the same
as the username. Change the password after you have completed the steps to
create the schema.

4. Connect to the database as the owner by entering the following command line
entry:

connect <ownername>/<password>

5. Run the check_dcp script using the following command line entry:

SQL > @master/check_dcp <Password> <Install home dir> <Sql*Loader
executable>

<Password> This is the password for the database owner, to invoke
SQL*Loader.

<Install home dir> This is the full path to the database Install home directory
as previously described. Do not enter a trailing / character.

An example of a full path follows:

/app/ofsa/ofsa4.0-092/dbs/450001010

<Sql*Loader executable> This is the command used to execute SQL*Loader.
For most Oracle installations, this command is sqlldr.

6. Review the check_dcp.log file for any errors. You can ignore any errors relating
to dropping an object. You must resolve any other errors reported in this log file
before proceeding with the database creation process.

7. Run the generate_install script to generate the installation file.

SQL > @master/generate_install <Password> <Install home dir> <Sql*Loader
executable>

Caution: FDM requires that the database owner schema name for
the FDM database objects be any name other than OFSA. The
database owner is the schema name that owns all of the tables and
other database objects used by the OFS applications. This schema
name cannot be OFSA because of a naming conflict with Oracle
roles required by the OFS applications.

Creating the FDM Database

FDM Database Installation 10-21

<Password> This is the password for the database owner, to invoke
SQL*Loader.

<Install home dir> This is the full path to the database Install home directory
as previously described. Do not enter a trailing / character.

An example of a full path follows:

/app/ofsa/ofsa4.0-092/dbs/450001010

<Sql*Loader executable> This is the command used to execute SQL*Loader.
For most Oracle installations, this command is sqlldr.

The generate_install script then prompts for the following:

Functional Currency

The Functional Currency is the base currency for any financial statements
created from the FDM database. For a list of valid Functional Currencies, refer
to Appendix A, "Functional Currencies".

After you select your Functional Currency, the generate_install script prompts
for confirmation:

You are about to install the following product(s):
OFS Applications

Do you want to proceed with this installation (y/n) >

Type y at the prompt to continue.

8. If you typed y to continue, the generate_install script creates a log file. Review
the generate_install.log file to verify that there are no significant errors.
Acceptable errors include any messages for attempting to drop objects.

9. If you typed y to continue, the generate_install script creates a
/master/create.sql. This script contains the DDL statements for creating the
FDM schema. You can modify the storage parameters and tablespace names
specified in this script for creating the FDM objects.

10. Run the install script to create the FDM database.

Caution: Every table and index definition in the create.sql script
has the same default storage parameters. Modify these parameters
to meet your tablespace schema and sizing expectations

Creating the FDM Database

10-22 Oracle Financial Services Installation and Configuration Guide

SQL > @master/install <Password> <Install home dir> <Sql*Loader
executable>

<Password> This is the password for the database owner, to invoke
SQL*Loader.

<Install home dir> This is the full path to the database Install home directory
as previously described. Do not enter a trailing / character.

An example of a full path follows:

/app/ofsa/ofsa4.0-092/dbs/450001010

<Sql*Loader executable> This is the command used to execute SQL*Loader.
For most Oracle installations, this command is sqlldr.

11. Review the following log files for any errors that may have occurred during the
Database Creation Process:

■ <xxxxxxxxx>_install.log

■ <xxxxxxxxx>_install_part_two.log

■ generate_create_part_two.log

where xxxxxxxxx is the FDM database release. For example: 450000037.log and
450000037_part_two.log.

You can ignore the following types of errors:

■ Creation errors for public synonyms caused by name is already used by an
existing object.

■ Compilation errors for the ITG_RESOLVE_RANGE function. This function
is used for integration with the Oracle General Ledger product and is
therefore only operational when linked to an Oracle General Ledger
database.

■ Oracle error 4054 - database link OTBFS does not exist during the adding of
the package body for the OFSA_OMM_TO_VFS package. This package is
used for the integration with the Oracle Telebusiness product, and is
therefore only operational when linked to an Oracle Telebusiness database.

Creating the FDM Database

FDM Database Installation 10-23

Completing the Procedure
The Oracle installation process creates three files. The location and function of each
of these files is described in the following table.

Finalize the installation process by completing the following tasks.

1. If you plan to use the Oracle utilities dbshut or dbstart edit the
/var/opt/oracle/oratab or /etc/oratab (as appropriate for your system) with the
following information:

$ORACLE_SID:$ORACLE_HOME:BOOT_STATUS

An example of an edited file follows:

MYDBASE:/db/d00/app/oracle/product/8.0.4:Y

2. Configure NET8 using the following UNIX utilities provided in the $ORACLE_
HOME/bin file: net8asst.sh and/or net8wiz.sh. Be sure to consult the NET8
Administrator’s Guide to configure NET8.

After configuring NET8 you should have the following two files:

■ listener.ora

■ tnsnames.ora

3. Start NET8 on the server by using the lsnrctl command in the $ORACLE_
HOME/bin file.

File Name Function

/var/opt/oracle/oratab
(/etc/oratab on some systems)

Describes the home information for each database
instance. This file must have a line showing the
database name, home directory and boot-up
status.

This file is used primarily with the following
Oracle commands: dbstart and dbshut.

$ORACLE_HOME/Network/Admin
or
/var/opt/oracle/listener.ora
(/etc/listener.ora on some systems)

Describes the TNS listeners connecting users to
the database instances.

$ORACLE_HOME/Network/Admin
or
/var/opt/oracle/tnsnames.ora
(/etc/tnsnames.ora on some systems)

Provides connect descriptors mapped to service
names.

Creating the FDM Database

10-24 Oracle Financial Services Installation and Configuration Guide

An example of this lsnrctl command follows:

lsnrctl start LISTENER_NAME

4. Verify that the listener is running and configured correctly using the lsnrctl
command.

An example of this lsnrctl command follows:

lsnrctl stat LISTENER_NAME

5. Test the listener against your database using the command example that
follows:

sqlplus schema/password@tnsnames_entry

Upgrading from OFSA 3.5/4.0 11-1

11
Upgrading from OFSA 3.5/4.0

This chapter provides information for users upgrading from the Oracle Financial
Services Applications (OFSA) database versions 3.5 and 4.0 to Release 4.5 of the
Oracle Financial Data Manager (FDM) database. The FDM Database Upgrade
process migrates existing OFSA 3.5 and 4.0 database structures to the new FDM 4.5
database environment. This chapter describes how this migration process affects
client data database structures.

The following specific migration topics are covered in this chapter:

■ Rename of FDM Reserved Objects to OFSA_

■ Portfolio Instrument and Services Tables

■ Non-Portfolio Instrument Tables

■ LEDGER_STAT

■ Code Descriptions

■ Multiprocessing Settings

■ Financial Elements

■ PROCESS_CASH_FLOWS

■ Collateral Data Model

■ ID Conversions

Note: Information regarding how the 4.5 upgrade process affects
security is discussed in the Chapter 14, "FDM Security".

Rename of FDM Reserved Objects to OFSA_

11-2 Oracle Financial Services Installation and Configuration Guide

Rename of FDM Reserved Objects to OFSA_
All internal application objects, such as those used to store the OFSA IDs, are
renamed in FDM 4.5 with an OFSA_ prefix. Any table with such a prefix is
designated as an FDM Reserved Object.

The FDM database upgrade process automatically updates OFSA IDs to reference
the new object names. However, the FDM database upgrade process does not
update SQL IDs, custom stored procedures or custom Discoverer Reports. After the
upgrade process is complete, you must update any of these that reference FDM
Reserved Objects.

Portfolio Instrument and Services Tables
The term Portfolio Instrument table is used to refer to tables storing financial account
data for use with the OFS applications. The term Services table designates the
account services tables such as CC and CD.

Tables in OFSA 3.5/4.0 with a SYSTEM_INFO data_code value in (2,6,8) are
considered to be in the Portfolio Instrument and Services Tables category for
purposes of the FDM 4.5 Database Upgrade. To identify the tables in this category,
run the following SQL statement:

SELECT table_name FROM system_info S, all_tables A
WHERE S.data_code in (2,6,8)
AND A.owner = :fdm_schema_owner
AND S.table_name = A.table_name;

Any table in this list is affected by the upgrade as follows:

■ Multi-Currency Enablement

■ TP Option Costing

Note: The Migration procedure registers only FDM 4.5 Metadata
for those objects that are identified in the OFSA 3.5/4.0 SYSTEM_
INFO table and which exist as valid tables or views in the Oracle
RDBMS. The 4.5 Migration procedure does not convert metadata
for synonyms or views in the OFSA 3.5/4.0 database that point to
objects of a different name.

Portfolio Instrument and Services Tables

Upgrading from OFSA 3.5/4.0 11-3

■ Table Classification Validation

Multi-Currency Enablement
FDM 4.5 supports a multi-currency environment. To this end, the FDM 4.5 Database
Upgrade process adds a new column, ISO_CURRENCY_CD, to all OFSA 3.5 and 4.0
Portfolio Instrument and Services tables. The Database Upgrade process also
updates this column with a default currency value for all instrument records based
upon the Functional Currency specified during the Metadata Migration phase.
When you launch the Migration phase of the Database Upgrade Process, it prompts
for a Functional Currency Code, which is then used for this update.

For tables with a large number of records, the addition of this new column and the
update of the existing instrument records can require significant time to complete.
The storage definition for instrument tables can also be affected by this update.

TP Option Cost Calculations
The Database Upgrade process adds the following fields to all Portfolio Instrument
and Services tables:

Note: Previous versions of OFSA included a CURRENCY_CD
column on Instrument tables for reporting purposes. ISO_
CURRENCY_CD column is now used to designate the Currency in
FDM 4.5. FDM preserves the CURRENCY_CD column on all
instrument tables so that you can map values from this column to
the new ISO_CURRENCY_CD standard using the Currency
Mapping utility described in Chapter 21, "FDM Utilities".

Column Name Column Definition

ORG_MARKET_VALUE NUMBER(14,2)

CUR_OAS NUMBER(8,4)

CUR_STATIC_SPREAD NUMBER(8,4)

HISTORIC_OAS NUMBER(8,4)

HISTORIC_STATIC_SPREAD NUMBER(8,4)

Non-Portfolio Instrument Tables

11-4 Oracle Financial Services Installation and Configuration Guide

Table Classification Validation
The Database Upgrade process assigns Table Classifications to Portfolio Instrument
and Services tables so that they are available within FDM for OFS processing
operations. The Database Upgrade process then validates these assignments and
reports any Table Classification assignment failures in the part_two upgrade log
file. Note that this is legitimate for a table to fail a Table Classification assignment.
OFSA 3.5 and 4.0 supported the flexible columns implementation, which means that
some tables may not have all of the required columns to satisfy a particular Table
Classification assignment.

All Instrument and Services tables from OFSA 3.5/4.0 are assigned to one or more
of the following Table Classifications:

The Database Upgrade process validates these Table Classification assignments and
reports any assignment failures to the <xxxxxxxxx>_part_two.log, where xxxxxxxxx
is the FDM database release. Refer to Chapter 12, "FDM Database Upgrade Process"
for more information regarding reviewing the upgrade log files. Refer to
Chapter 16, "FDM Object Management" for more information on the Table
Classification requirements.

Non-Portfolio Instrument Tables
Non-Portfolio Instrument tables are tables used in Oracle Performance Analyzer
Allocation processing that do not possess the Oracle Transfer Pricing or Oracle Risk
Manager columns. This category includes, but is not limited to, tables storing
account transaction data.

Table Classification CD Table Classification

20 Instrument

200 TP Cash Flow

210 TP Non-Cash Flow

310 Instrument Profitability

360 RM Standard

330 Data Correction Processing

370 TP Option Costing

Non-Portfolio Instrument Tables

Upgrading from OFSA 3.5/4.0 11-5

Transaction tables (also referred to in OFSA 3.5/4.0 as Vertical Instrument Activity
Tables, or VIAT) are a subclass of Non-Portfolio Instrument tables. These tables are
only unofficially supported within the OFSA 3.5/4.0 metadata. As such, the FDM
4.5 Database Upgrade process has no way of identifying transaction tables in an
OFSA 3.5/4.0 database.

Transaction tables in OFSA 3.5/4.0 are tables with a DATA_CODE assignment of 3
and a unique index consisting of ID_NUMBER, IDENTITY_CODE and one or more
Leaf columns. The database upgrade process treats these tables as Non-Portfolio
Instrument tables.

Tables in OFSA 3.5/4.0 with a SYSTEM_INFO data_code value = 3 are considered to
be in the Non-Portfolio Instrument Table category for purposes of the FDM 4.5
Database Upgrade. To identify the tables in this category, run the following SQL
statement:

SELECT table_name FROM system_info S, all_tables A
WHERE S.data_code = 3;
AND A.owner = :fdm_schema_owner
AND S.table_name = A.table_name;

Any table in this list is affected by the upgrade as follows:

■ Multi-Currency Enablement

■ Table Classification Validation

Multi-Currency Enablement
FDM 4.5 supports a multi-currency environment. To this end, the FDM 4.5 Database
Upgrade process adds a new column, ISO_CURRENCY_CD, to all OFSA 3.5 and 4.0
Non-Portfolio Instrument tables. The Database Upgrade process also updates this
column with a default currency value for all instrument records based upon the
Functional Currency specified during the Metadata Migration phase. When you
launch the Migration phase of the Database Upgrade Process, it prompts for a
Functional Currency Code, which is then used for this update.

For tables with a large number of records, the addition of this new column and the
update of the existing instrument records can require significant time to complete.
The storage definition for instrument tables can also be affected by this update.

Table Classification Validation
The Database Upgrade process assigns Table Classifications to Non-Portfolio
Instrument tables so that they are available within FDM for OFS processing

LEDGER_STAT

11-6 Oracle Financial Services Installation and Configuration Guide

operations. The Database Upgrade process then validates these assignments and
reports any Table Classification assignment failures in the part_two upgrade log
file. Note that this is legitimate for a table to fail a Table Classification assignment.
OFSA 3.5 and 4.0 supported the flexible columns implementation, which means that
some tables may not have all of the required columns to satisfy a particular Table
Classification assignment.

All Non-Portfolio Instrument tables from OFSA 3.5/4.0 are assigned to one or more
of the following Table Classifications:

The Database Upgrade process validates these Table Classification assignments and
reports any assignment failures to the <xxxxxxxxx>_part_two.log, where xxxxxxxxx
is the FDM database release. Refer to Chapter 12, "FDM Database Upgrade Process"
for more information regarding reviewing the upgrade log files. Refer to
Chapter 16, "FDM Object Management" for more information on the Table
Classification requirements.

LEDGER_STAT
The LEDGER_STAT table is an FDM reserved table that stores client data. The
LEDGER_STAT table is affected by the upgrade as follows:

■ Multi-Currency Enablement

Table Classification CD Table Classification

20 Instrument

310 Instrument Profitability

330 Data Correction Processing

Note: After the database upgrade process is complete, manually
assign any Transaction (VIAT) tables to the Transaction Profitability
Table Classification. For these tables, you should also revoke the
Instrument Profitability classification that the database upgrade
process assigns automatically. The FDM 4.5 database upgrade
process has no way of identifying which OFSA 3.5/4.0
Non-Portfolio Instrument tables are actually Transaction tables.

Code Descriptions

Upgrading from OFSA 3.5/4.0 11-7

Multi-Currency Enablement
FDM 4.5 supports a multi-currency environment. To this end, the FDM 4.5 Database
Upgrade process adds a new column, ISO_CURRENCY_CD, to the LEDGER_STAT
table. The Database Upgrade process also updates this column with a default
currency value for all instrument records based upon the Functional Currency
specified during the Metadata Migration phase. When you launch the Migration
phase of the Database Upgrade Process, it prompts for a Functional Currency Code,
which is then used for this update.

For tables with a large number of records, the addition of this new column and the
update of the existing instrument records can require significant time to complete.
The storage definition for instrument tables can also be affected by this update.

Code Descriptions
The OFSA 3.5/4.0 database stores names and descriptions for Code values in the
SYSTEM_CODE_VALUES table. FDM 4.5 migrates the data stored in this table to
individual data structures for each Code column.

The migration of this data is dependent upon the type of Code column. There are
four types of Code columns in FDM:

■ FDM Reserved Codes

■ User Editable Codes

■ User Defined Codes

■ Interest Rate Codes

■ Product Type Code

This section discusses the impact of each of these migrations.

FDM Reserved Codes
FDM Reserved Codes are code columns for which FDM reserves the entire range of
values. FDM 4.5 creates new data structures for each individual FDM Reserved
Code column and seeds these data structures with the acceptable set of values. Data
from SYSTEM_CODE_VALUES is not migrated to the FDM 4.5 database. If users
have created any new code values or changed existing code descriptions for these
code columns in OFSA 3.5/4.0, these changes are removed by the 4.5 database
upgrade process.

Code Descriptions

11-8 Oracle Financial Services Installation and Configuration Guide

Code Descriptions for FDM Reserved Code columns are MLS enabled. FDM 4.5
creates the following objects for each Code column:

■ Base Table (named _CD)

■ MLS Table (named _MLS)

■ Language Compatible View (named _DSC)

The upgrade process also creates the appropriate triggers for these objects to
maintain the Multi-Language Support functionality. For more information about
these objects, and about multi-language support within FDM, refer to Chapter 15,
"FDM Multi-Language Support".

The following code columns are reserved by FDM:

FDM Reserved Code Columns

Note: Only a subset of the Code columns are available for use
with Instrument and Client Data Objects. The remaining Code
columns are reserved for use with FDM internal application objects.
Refer to the Oracle Financial Data Manager Data Dictionary for
information on Code columns available for use with Instrument
and Client Data Objects.

ACCRUAL_BASIS_CD OVERDRAFT_PROTECTION_CD

ACCUMULATION_TYPE_CD OWNERSHIP_CD

AMOUNT_TYPE_CD PATTERN_TYPE_CD

ASSIGNMENT_DATE_CD PAYMENT_PATTERN_TYPE_CD

ASSIGNMENT_METHOD_CD PAYMENT_TYPE_CD

BATCH_EVENT_STATUS_CD RCV_ACCRUAL_BASIS_CD

BATCH_EVENT_TYPE_CD RCV_COMPOUND_BASIS_CD

BOOKING_CD PMT_TYPE_CD

CALC_METHOD_CD PP_DIM_TYPE_CD

CALC_MODE_CD PRIVATE_MORTGAGE_INSURER_CD

CALC_SOURCE_CD PROCESS_FILTER_TYPE_CD

COLUMN_PROPERTY_CD PROCESS_PARTITION_CD

Code Descriptions

Upgrading from OFSA 3.5/4.0 11-9

COMPONENT_TYPE_CD PROCESS_SCOPE_CD

COMPOUND_BASIS_CD PUT_CALL_CD

CONFORMANCE_CD QUERY_ROLE_CD

CONTACT_METHOD_CD QUOTE_CD

CURRENCY_STATUS_CD RATE_CAP_TYPE_CD

DETAIL_RECORD_CD RATE_CHG_RND_CD

DIMENSION_TYPE_CD RATE_CHG_ROUNDING_CD

DISCOUNT_RATE_METHOD_CD RATE_DATA_SOURCE_CD

ESTIMATION_SMOOTHING_CD RATE_FLOOR_TYPE_CD

EXCHANGE_RATE_CONVERT_TYPE_CD RATE_TERM_CD

EXCHANGE_RATE_STATUS_CD PAY_ACCRUAL_BASIS_CD

FBAL_METHOD_CD PAY_COMPOUND_BASIS_CD

FCAST_IRC_METHOD_CD RATE_VOLUME_REL_CD

FCAST_XRATE_METHOD_CD REGULATION_D_STATUS_CD

FINANCIAL_SCENARIO_CD REPRICE_METHOD_CD

FORWARD_TYPE_CD RESP_PARTY_CD

FREQUENCY_UNIT_CD RESULT_TYPE_CD

ID_TYPE_CD ROLL_FACILITY_CD

INCENTIVE_TYPE_CD RUNOFF_TYPE_CD

INT_TYPE SETTLEMENT_TYPE_CD

INTEREST_COMPONENT_TYPE_CD SMOOTHING_METHOD_CD

INTEREST_TIMING_TYPE_CD SOURCE_CD

IRC_FORMAT_CD SOURCE_TBL_TYPE_CD

ISO_CURRENCY_CD STOCH_RANDOM_SEQ_TYPE_CD

JOB_STATUS_CD STRIKE_TYPE_CD

LEAF_DATA_SOURCE_CD STRING_CD

MEASURE_CD TABLE_CLASSIFICATION_CD

MESSAGE_CD TARGET_BAL_CD

MODIFY_ACTION_CD TERM_TYPE_CD

Code Descriptions

11-10 Oracle Financial Services Installation and Configuration Guide

User Editable Codes
Code columns seeded by FDM but for which FDM enables users to create new code
values are designated as User Editable Codes. For each of these code columns, FDM
seeds MLS enabled data structures as well as a reserved range of code values. Users
are then allowed to add new code description entries to these data structures.

FDM 4.5 creates new MLS enabled data structures for each individual FDM User
Editable Code column and seeds the reserved range for these data structures. The
upgrade process also migrates any user entered code values for these Code columns
from the OFSA 3.5/4.0 SYSTEM_CODE_VALUES table into the new data structures.
However, any user entered code values in the reserved range are deleted during
this process.

Code Descriptions for User Editable Code columns are MLS enabled. FDM 4.5
creates the following objects for each Code column:

■ Base Table (named _CD)

■ MLS Table (named _MLS)

■ Language Compatible View (named _DSC)

The upgrade process also creates the appropriate triggers for these objects to
maintain the Multi-Language Support functionality. For more information about
these objects, and about Multi-Language Support within FDM, refer toChapter 15,
"FDM Multi-Language Support".

MSG_SEVERITY_CD TM_PROCESS_TYPE_CD

MULTIPLIER_CD TP_CALC_METHOD_CD

NET_MARGIN_CD TRACKING_METHOD_CD

OD_PROTECTION_CD TRACKING_STATUS_CD

OPTION_COST_METHOD_CD TS_MODEL_CD

OPTION_EXERCISE_CD USAGE_CD

OPTION_TYPE_CD

Note: While the PRODUCT_TYPE_CD column is designated as a
User Editable Code, the migration of the code descriptions for this
column is a special case for FDM 4.5. Refer to Product Type Code
for more information.

Code Descriptions

Upgrading from OFSA 3.5/4.0 11-11

The following code columns are designated as User Editable:

User Editable Code Columns

User Defined Codes
Code columns created by users are designated as User-Defined. Such columns are
not part of the standard FDM data model. Rather, they are new columns added by
users to the OFSA 3.5/4.0 database. OFSA 3.5/4.0 stores the descriptions for these
columns in the SYSTEM_CODE_VALUES table.

The FDM 4.5 database upgrade process creates non-MLS enabled table structures to
store values for these codes. Unlike the seeded code columns, each User Defined

ADJUSTABLE_TYPE_CD INSTRUMENT_TYPE_CD

AGENCY_CD INSURANCE_TYPE_CD

AMORTIZATION_TYPE_CD ISSUER_CD

AMRT_TYPE_CD LIEN_POSITION_CD

CMO_TRANCHE_CD LIQUIDITY_CLASS_CD

COLLATERAL_CD LOAN_PROPERTY_TYPE_CD

COLLATERAL_STATUS_CD MARKET_SEGMENT_CD

COLLATERAL_SUB_TYPE_CD MORTGAGE_AGENCY_CD

COLLATERAL_TYPE_CD OCCUPANCY_CD

COMMITMENT_TYPE_CD PAY_ADJUSTABLE_TYPE_CD

CONSOLIDATION_CD PLEDGED_STATUS_CD

CREDIT_RATING_CD PRODUCT_TYPE_CD

CREDIT_STATUS_CD PROPERTY_TYPE_CD

DIRECT_IND_CD PURPOSE_CD

DISCHARGE_TYPE_CD RELATIONSHIP_CD

ERROR_CODE RCV_ADJUSTABLE_TYPE_CD

EXIST_BORROWER_CD SERVICING_AGENT_CD

GEOGRAPHIC_LOC_CD SIC_CD

HELD_FOR_SALE_CD SOLICIT_SOURCE_CD

Code Descriptions

11-12 Oracle Financial Services Installation and Configuration Guide

code column is migrated into a single individual Description table. This table
supports code descriptions in a single language only.

If the Code column is designated in SYSTEM_CODE_VALUES for the
INSTRUMENT=’ALL’, FDM migrates the descriptions by creating an individual
Description table for each distinct code column. The table name is prefixed with the
code column name, and is suffixed with a _DSC extension to designate that it stores
the code descriptions for that column. Long code column names will result in a
truncation in the table name so that it meets the Oracle RDBMS limit of 30
characters.

If the Code column is designated in SYSTEM_CODE_VALUES for INSTRUMENT
<>’ALL’, then the code descriptions apply only to the specific tables listed. In this
case, the FDM database upgrade creates a separate Description table for each
unique combination of code COLUMN_NAME and INSTRUMENT.

Interest Rate Codes
The Interest Rate Code columns (and its alias column names) are a special case.
Values for these columns are created using Oracle Financial Data Manager Rate
Manager, rather than being entered directly into a Code table.

FDM designates the following as Interest Rate Code columns:

■ INTEREST_RATE_CD

■ PAY_INTEREST_RATE_CD

■ RCV_INTEREST_RATE_CD

■ STRIKE_INTEREST_RATE_CD

Product Type Code
The PRODUCT_TYPE_CODE column is designated as a User Editable code
column. However, the seeded Product Type codes and code descriptions in FDM 4.5
are significantly changed from the seeded values for OFSA 3.5/4.0. Because of this,
the migration of code descriptions for the PRODUCT_TYPE_CODE column is a
special case for FDM 4.5.

The OFSA 3.5/4.0 database seeded a set of PRODUCT_TYPE_CODE values for each
distinct Instrument table name. For example, the seeded set of Product Types for the
DEPOSITS table would be a different set than the seeded Product Types for
COMMERCIAL_LOAN. The codes overlapped in many cases, with the same

Code Descriptions

Upgrading from OFSA 3.5/4.0 11-13

numeric PRODUCT_TYPE_CD associated with different descriptions in each
Instrument table.

In FDM 4.5, all of the seeded Product Type codes are consolidated into a single set
that is valid for all Instrument and Account tables. FDM stores Product Type Code
descriptions in a single set of data structures that is MLS enabled. The seeded data
structures are:

OFSA_PRODUCT_TYPE_CD (Base table)

OFSA_PRODUCT_TYPE_MLS (MLS table)

OFSA_PRODUCT_TYPE_DSC (Language Compatible View)

FDM still designates this column as User Editable, so that users are allowed to enter
their own Product Type codes and descriptions as needed.

The old Product Type Codes previously stored in SYSTEM_CODE_VALUES are
retained, however, FDM migrates them as User Defined code descriptions and
creates individual, non-MLS enabled Description tables for each. Because a separate
set of these codes were originally seeded for each distinct Instrument table, the
FDM database upgrade process creates a separate Product Type Code description
table for each such set recorded in SYSTEM_CODE_VALUES. The upgrade process
maps any existing instrument tables to these individual Product Type Code tables
in OFSA_DESCRIPTION_TABLES.

Thus, all of the Product Type Codes from OFSA 3.5/4.0 are preserved as User
Defined Code tables. The new data structures for the seeded Product Type Codes
are also created for your database. If you decide to use the new, MLS enabled data
structures for Product Type Code, you need to complete the following:

■ Modify data extracts to use the new Product Type Codes

■ Edit the Description Table Mappings (which can be done in the FDM
Administration Application) for the PRODUCT_TYPE_CD column on all
existing Instrument tables to map to the new OFSA_PRODUCT_TYPE_DSC
view

Because the old Product Type Codes had overlapping code values, you need to
modify your data extract routines to populate this column with the set of Product
Type Codes available in OFSA_PRODUCT_TYPE_DSC.

If you do decide to migrate to the new Product Type data structures, you are free to
unregister and drop any of the User Defined Product Type Description tables
created by the 4.5 FDM database upgrade process.

Multiprocessing Settings

11-14 Oracle Financial Services Installation and Configuration Guide

Multiprocessing Settings
OFS application multiprocessing settings in FDM 4.5 are no longer specified in the
server ini files. Rather, they are designated in the database. Because of this, all OFS
application multiprocessing settings revert to the default after the FDM upgrade
process is complete. Refer to Chapter 19, "OFSA Multiprocessing" for more
information

Financial Elements
FDM introduces the categorization of Financial Elements for Transformation
processing purposes. Financial Elements are specific values for the FINANCIAL_
ELEM_ID Leaf Column. Transformation processing requires that Financial Elements
are assigned to one of the following categories:

■ Balance

■ Balance Weighted Object

■ Standard Rate

■ Statistic

FDM seeded Financial Elements are assigned to one of these categories during the
FDM database upgrade process. The FDM upgrade process also categorizes all user
defined Financial Elements as Statistic. FDM designates the category by assigning a
value to the Column Property field for each leaf.

Edit or view Column Property assignments for user defined Financial Elements
from Leaf Setup within the OFS Applications.

PROCESS_CASH_FLOWS
The 4.5 FDM database upgrade process does not convert data from the OFSA
3.5/4.0 PROCESS_CASH_FLOWS table to the new table OFSA_PROCESS_CASH_
FLOWS. Because the data in this table is for the auditing of Risk Manager and
Transfer Pricing process runs, it is not necessary to migrate this data to the new
table structure. Re-running the required Risk Manager or Transfer Pricing Process
IDs regenerates data for the new OFSA_PROCESS_CASH_FLOW table.

The upgrade process saves the data from OFSA 3.5/4.0 PROCESS_CASH_FLOWS
table into a table named O_PROCESS_CASH_FLOWS.

ID Conversions

Upgrading from OFSA 3.5/4.0 11-15

Collateral Data Model
FDM 4.5 introduces a new set of objects supporting Collateral information. These
Collateral objects are considered part of the FDM standard data model. The FDM
upgrade process automatically creates these objects.

Prior to running the FDM database upgrade procedure, verify that you do not
already have these object names in your FDM Schema. In order for these objects to
be created properly, the FDM database upgrade process requires that they do not
exist in the schema.

The new Collateral objects are:

ID Conversions
As a result of the introduction of multi-currency functionality in the 4.5 release, as
well as other functionality enhancements for Rate Manager, Risk Manager, Transfer
Pricing, and Performance Analyzer, the underlying data structure of some OFSA
IDs has changed. The FDM database upgrade process converts information stored
for these IDs to the new 4.5 database structure.

Table Name

ACCOUNT_COLLATERAL

ACCOUNT_GUARANTOR_RELATION

COLLATERAL

COLLATERAL_ASSESSMENT_HISTORY

COLLATERAL_AUCTION_DETAILS

COLLATERAL_BOATS

COLLATERAL_INSURANCE_DETAILS

COLLATERAL_OTHER_INSTITUTIONS

COLLATERAL_OWNERS

COLLATERAL_REAL_ESTATE

COLLATERAL_SHARES

COLLATERAL_VEHICLES

ID Conversions

11-16 Oracle Financial Services Installation and Configuration Guide

Where functionality has significantly changed, the conversion routines make
assumptions as to how the data is converted. Conversion routines support only
upgrades from OFSA 3.5 and OFSA 4.0. The converted IDs may not generate the
same results as the old IDs. Before you process a newly converted database, it is
recommended that you review the converted IDs for content and update them
where necessary.

This chapter describes the conversion routines for the following IDs:

■ Allocation ID

■ Configuration ID

■ Discount Rates ID

■ Forecast Balance ID

■ Forecast Rates ID

■ Historical Rates ID

■ Leaf Characteristics ID

■ Maturity Strategy ID

■ Pricing Margin ID

■ RM Process ID

■ Term Structure ID

■ TP Process ID

■ Transaction Strategy ID

■ Transfer Pricing ID

Allocation ID
The FDM 4.5 Database Upgrade process converts Allocation IDs from OFSA 3.5/4.0
to the FDM 4.5. This conversion includes the following:

■ Add Missing Leaf Columns

■ Remove Extraneous Leaf Columns

■ Mirror to Table Update

■ Error Messages

ID Conversions

Upgrading from OFSA 3.5/4.0 11-17

Add Missing Leaf Columns
If there is a Leaf Column identified in OFSA_CATALOG_OF_LEAVES where
TABLE_TYPE<> ‘V’ missing from the Allocation ID, the Allocation conversion
routine performs the following logic:

Debit (ALLOC_LEAVES.ROW_TYPE=10) and Credit (ALLOC_LEAVES.ROW_TYPE=20) rows:
For each Allocation ID Page Loop:

For each Product Leaf Column in OFSA_CATALOG_OF_LEAVES where
OFSA_CATALOG_OF_LEAVES.TABLE_TYPE<>’W’ and Leaf Column is
missing Debit/Credit rows:

■ IF ALLOC_LEAVES.LEAF_NUM_ID=0 (Financial_elem_id) and ALLOC_
LEAVES.LEAF_NODE=-99100 (None) then set OFSA_ALLOC_
LEAVES.LEAF_NODE for the missing Leaf Column to -99100 else
-99300(Same As Filter).

■ OFSA_ALLOC_LEAVES.TREE_SYS_ID=0

■ OFSA_ALLOC_LEAVES.TREE_LEVEL_NUM = 0

■ OFSA_ALLOC_LEAVES.FIN_ELEM_CD = 0

■ OFSA_ALLOC_LEAVES.MIRROR_TO_TABLE = ‘LEDGER_STAT’

■ The rest of the columns have the same value as the other Product Leaf
Columns.

Filter(ALLOC_LEAVES.ROW_TYPE=30) and Percentage (ALLOC_LEAVES.ROW_TYPE=40,45)
For each Allocation ID Page Loop

For each Product Leaf Column in OFSA_CATALOG_LEAVES where OFSA_
CATALOG_LEAVES.TABLE_TYPE <> ‘V’ and Leaf Column is missing Filter
/Percentage rows:

Note: Performance Analyzer 4.5 employs operator precedence
logic that is different from that employed in version 3.5/4.0. Review
the alloc_id_conv.log for information regarding Allocation IDs that
may be impacted by this logic change. The alloc_id_conv.log also
provides information about the results of the Allocation ID
conversion routine.

ID Conversions

11-18 Oracle Financial Services Installation and Configuration Guide

■ IF the missing Product Leaf Column exists in the table that you wanted to
allocate then OFSA_ALLOC_LEAVES.LEAF_NODE= -99200 (ALL) else
-99100(None)

■ FSA_ALLOC_LEAVES.TREE_SYS_ID=0

■ FSA_ALLOC_LEAVES.TREE_LEVEL_NUM = 0

■ FSA_ALLOC_LEAVES.FIN_ELEM_CD = 0

■ FSA_ALLOC_LEAVES.MIRROR_TO_TABLE = ‘LEDGER_STAT’

■ The rest of the columns have the same value as the other Product Leaf
Columns.

Remove Extraneous Leaf Columns
When any of the Product Leaf Columns exist in OFSA_ALLOC_LEAVES and NOT
IN OFSA_CATALOG_OF_LEAVES then the Product Leaf Columns rows are
removed from OFSA_ALLOC_LEAVES.

(Only applies to OFSA_ALLOC_LEAVES.ROW_TYPE = 10,20,30,40,50)

Mirror to Table Update
Update OFSA_ALLOC_LEAVES set MIRROR_TO_TABLE = ‘LEDGER_STAT’;

Error Messages
There are some conditions for which the Allocation conversion is unable to set the
Leaf Column value. Such conditions may cause an error when the Allocation ID is
opened within Performance Analyzer 4.5:

1. Allocation IDs that do not have a Filter On but either the Debit or the Credit
Leaf value is set to Same As Filter.

2. Allocation IDs where the Filter O table is a Detail table, but the Debit or Credit
is set to Ledger_Stat and there is an L type leaf value set to Same As Filter.

3. Allocation IDs where the Filter On table is a Detail table but the Debit or Credit
is identified with Post to Ledger_Stat set to On and there is an L type leaf value
set to Same As Filter.

Allocation IDs with these conditions are logged to a log file named alloc_id_
conv.log. Review this log file at the end of the FDM 4.5 database upgrade process to
identify any potential Allocation ID problems.

ID Conversions

Upgrading from OFSA 3.5/4.0 11-19

Configuration ID
1. Groups from OFSA 3.5/4.0 are now referred to as ID Folders for the purposes of

categorizing OFSA IDs. The Default Group Name is now the Default Folder
Name for Configuration IDs.

2. The Configuration ID no longer designates a Historical Rates ID for the session.

3. The Configuration ID no longer designates a Compound Basis for the session.
This functionality is now part of Rate Manager.

Discount Rates ID
1. OFSA_IDT_DISCOUNT_RATE

■ Update all the values in ISO_CURRENCY_CD column to 000.

■ Update all the values in INTEREST_COMPONENT_TYPE_CD to 1.

Forecast Balance ID
If you are upgrading from OFSA 3.5, the FDM Database Upgrade Process executes
the logic described in the Upgrades from OFSA 3.5 section first before executing the
logic described in the All Upgrades section.

Upgrades from OFSA 3.5
The Forecast Balance ID conversion takes information from the existing Forecast
Balance ID and translates the format into the new Forecast Balance ID format. The
Forecast Balance methodologies are mapped from the previous release’s
methodology selections to one of the following new business methodologies:

■ No New Business

■ New Add

■ Target Average

■ Target End

■ Target Growth

■ Roll-over

■ Roll-over with New Adds

A description of the assignment process, per method, is provided as follows:

ID Conversions

11-20 Oracle Financial Services Installation and Configuration Guide

New Add Methods
The conversion assignment depends on roll-into assumptions for the current
product. If the current product does not have roll-into assumptions, the conversion
process assigns New Add as the forecast balance method. If roll-into assumptions
exist for the product, Roll-over with New Add is assigned as the forecast method.

In all New Add cases, the timing method is set to At Bucket End.

Target Average Method
The Target Average method does not change between releases. If roll-into assumptions exist
for the product, the conversion deletes the roll-into assumptions.

Target End Method
The Target End method does not change between releases. If roll-into assumptions
exist for the product, the conversion deletes the roll-into assumptions.

Roll-over Method
If roll-into assumptions exist for the product and no other new business
assumptions exist, the conversion assigns the Roll-over method. Two other issues
may need to be addressed during conversions of roll-over assumptions:

Bucket Range Definition
The conversion may need to employ complex logic in defining the percents per
modeling bucket. In prior versions, the user defined roll-over bucket ranges for
each source leaf. Since Release 4.0, the user defines bucket ranges for each target
leaf. As a result, the conversion routine must create consistent bucket ranges for all
source leafs generating roll-over for a single target leaf.

The following table represents source leafs for a single target leaf, 5-Year CD. Note
that the bucket ranges are different for every source.

Note: Roll-into assumptions include other products rolling into the
product or roll-over from the product back into itself.

ID Conversions

Upgrading from OFSA 3.5/4.0 11-21

Input Data for Roll-over Conversion

To convert the data, the conversion must determine the superset of bucket ranges.
This is accomplished by starting with the smallest bucket range and working
through all other bucket ranges, breaking up the data as necessary. The resulting
input rows are displayed, as follows:

Output Data for Roll-over Conversion

Missing Buckets within the Bucket Range
The conversion routine determines the bucket range from the maximum and
minimum forecasted bucket for each product leaf. If intermediate buckets are
missing in this bucket range, filler buckets are generated with a balance of zero.
This issue would occur if not all buckets within the range had forecast balance

Source Leaf Bucket Range Roll Percent

5 Year CD 1 to 12 100%

5 Year CD 13 to 120 80%

3 Year CD 1 to 12 0 60%

1 Year CD 1 to 5 40%

Source Leaf Bucket Range Roll Percent

5 Year CD 1 to 5 100%

5 Year CD 6 to 12 100%

5 Year CD 13 to 120 80%

3 Year CD 1 to 5 60%

3 year CD 6 to 12 60%

3 Year CD 13 to 120 60%

1 Year CD 1 to 5 40%

1 Year CD 6 to 12 0%

1 Year CD 13 to 120 0%

ID Conversions

11-22 Oracle Financial Services Installation and Configuration Guide

assumptions. In other words, an assumption was defined for bucket 1, bucket 3 and
bucket 5 with no assumptions for buckets 2 and 4.

All Upgrades
1. OFSA_IDT_FORECAST_BAL

■ Update all the values in ISO_CURRENCY_CD column to OFSA_DB_
INFO.FUNCATIONAL_CURRENCY_CD

2. OFSA_FBAL_ROLL_INTO

■ Update all the values in ISO_CURRENCY_CD column to OFSA_DB_
INFO.FUNCATIONAL_CURRENCY_CD.

3. OFSA_FBAL_VOLUMES

■ Update all the values in ISO_CURRENCY_CD column to OFSA_DB_
INFO.FUNCATIONAL_CURRENCY_CD.

4. OFSA_FBAL_DIMENSIONS

■ Update all the values in ISO_CURRENCY_CD column to OFSA_DB_
INFO.FUNCATIONAL_CURRENCY_CD.

Forecast Rates ID
The Forecast Rates ID conversion routine creates a fcast_rate_id_conv.log file for
messages and information about the conversion.

ID Conversions

Upgrading from OFSA 3.5/4.0 11-23

The mapping logic to the new FDM 4.5 data structure is as follows:

Note: The Forecast Rates ID converts all scenarios for all interest
rate codes to the method Structured Change for every bucket. This
can create unnecessary excess data. The new structure of the
Forecast Rates ID also records the term of each modeling bucket.
Because existing Forecast Rates IDs may have been created under
differing Configuration IDs and therefore differing modeling
buckets, the Conversion routine assumes that each bucket is 1
month. Because of this, if a newly converted Forecast Rates ID is
opened under a Configuration ID with non-monthly buckets, a
warning is displayed. Once the ID is saved again, the new
modeling bucket terms are saved with it. After the conversion,
end-users may want to review the stored data and save the Forecast
Rates ID with a more optimal data set, depending upon their
desired rate change and modeling bucket definition.

Target Column

OFSA_IDT_FORECAST_RATES

Source Column

OFSA_CATALOG_OF_IDS Special Conversion Logic

FCAST_RATES_SYS_ID SYS_ID_NUM Must exist in OFSA_
CATALOG_OF_IDS where
ID_TYPE = 305

REPORTING_CURRENCY_CD N/A Plug with OFSA_DB_
INFO.Functional_Currency_
Cd.

Target Column

OFSA_FCAST_RATES_SCENARIOS

Source Column

RATES_SCENARIO Special Conversion Logic

FCAST_RATES_SYS_ID RATES_SYS_ID FCAST_RATE_SYS_ID must
exist in OFSA_IDT_
FORECAST_RATES.

SCENARIO_NUM SCENARIO_NUM

ID Conversions

11-24 Oracle Financial Services Installation and Configuration Guide

The logic to create the bucket data is as follows:

SCENARIO_NAME DESCRIPTION RATES_
SCENARIO.DESCRIPTION
column is 80 characters
long. So, the conversion
truncates the description to
40 characters. If the scenario
name is a duplicate within a
Forecast Rate ID, then the
conversion routine adds a
number suffix in the
scenario name.

Target Column

OFSA_FCAST_IRCS

Source Column

RATES_FORECAST Special Conversion Logic

FCAST_RATES_SYS_ID RATES_SYS_ID

SCENARIO_NUM SCENARIO_NUM

INTEREST_RATE_CD INTEREST_RATE_CD

FCAST_IRC_METHOD_CD N/A Plug 2

BASE_SCENARIO_NUM N/A Plug 0

Target Column

OFSA_FCAST_IRC_STRCT_CHG_BKT

Source Column

RATES_FORECAST Special Conversion Logic

FCAST_RATES_SYS_ID RATES_SYS_ID See below

SCENARIO_NUM SCENARIO_NUM See below

INTEREST_RATE_CD INTEREST_RATE_CD See below

FROM_BKT_NUM BUCKET See below

TO_BKT_NUM BUCKET See below

Target Column

OFSA_FCAST_RATES_SCENARIOS

Source Column

RATES_SCENARIO Special Conversion Logic

ID Conversions

Upgrading from OFSA 3.5/4.0 11-25

1. From the table RATES_FORECAST, select the RATES_SYS_ID and MAX
(RATE_FORECAST.BUCKET).

2. Within a Forecast Rate ID for each INTEREST_RATE_CD and SCENARIO_
NUM, insert an entry for each bucket in OFSA_FCAST_IRC_STRCT_CHG_BKT
until it reaches the MAX(RATE_FORECAST.BUCKET).

The conversion routine loops through all rows stored for each Rates Sys ID,
Scenario, Interest Rate Code, Interest Rate Term, Interest Rate Term Multiplier and
finds all explicit rate changes using the following process:

1. Order all rows from RATE_FORECAST by Rates Sys ID, Scenario, Interest Rate
Code, Interest Rate Term, Interest Rate Term Multiplier and Bucket.

2. Read in the first row and set the following variables:

■ sys_ID = RATES_FORECAST. RATES_SYS_ID

■ scenario = RATES_FORECAST. SCENARIO_NUM

■ IRC = RATES_FORECAST. INTEREST_RATE_CD

■ from_bucket_num = RATES_FORECAST.BUCKET

■ rate_change = RATES_FORECAST.INTEREST_RATE - PREVIOUS BUCKET
RATES_FORECAST.INTEREST_RATE

■ term = RATES_FORECAST. INTEREST_RATE_TERM

■ mult= RATES_FORECAST. INTEREST_RATE_MULT

Target Column

OFSA_FCAST_IRC_STRCT_CHG_VAL

Source Column

RATES_FORECAST Special Conversion Logic

FCAST_RATES_SYS_ID RATES_SYS_ID See below

SCENARIO_NUM SCENARIO_NUM See below

INTEREST_RATE_CD INTEREST_RATE_CD See below

FROM_BKT_NUM BUCKET See below

INTEREST_RATE_TERM INTEREST_RATE_TERM See below

INTEREST_RATE_TERM_MULT INTEREST_RATE_MULT See below

RATE_CHANGE INTEREST_RATE See below

ID Conversions

11-26 Oracle Financial Services Installation and Configuration Guide

3. Make sure all the FROM_BUCKET in OFSA_FCAST_IRC_STRCT_CHG_BKT
exist in OFSA_FCAST_IRC_STRCT_CHG_VAL. If any do not exist, insert the
missing buckets and set the rate_change to zero.

The logic to create the bucket data is as follows:

1. From the table RATES_FORECAST, select the RATES_SYS_ID and MAX
(BUCKET).

2. Insert into the OFSA_FCAST_RATES_BUCKET a set of rows where BUCKET_
NUM = 1 to the MAX (BUCKET) from step 1. For each row, automatically set
the term and multiplier equal to 1 and M respectively.

Historical Rates ID
The Historical Rates ID conversion routine creates a rate_manager_conv.log file for
messages and information about the conversion.

Specifying Historical Rates ID Priority
OFSA 3.5 and 4.0 allowed multiple Historical Rates IDs. However, Rate Manager
enforces uniqueness for each IRC. Therefore, the Historical Rates conversion routine
renames any duplicate Interest Rate Codes or Names during the conversion. Use
the OFSA_TEMP_IRC_45 table to specify which Historical Rates IDs to convert and
the precedence for converting them in the event that any duplicates exist. This table
is also used for specifying the base currency for each Historical Rate ID to be
converted.

If you designate Historical Rates IDs in OFSA_TEMP_IRC_45, only the IDs
specified in this table are converted. Any other Historical Rates IDs that exist in the
database but are not specified in OFSA_TEMP_IRC_45 are not converted.

Target Column

OFSA_FCAST_RATES_BUCKETS

Source Column

RATES_FORECAST Special Conversion Logic

FCAST_RATES_SYS_ID RATES_SYS_ID See below

BUCKET_NUM BUCKET See below

BUCKET_TERM N/A plug 1

BUCKET_TERM_MULT N/A plug M

ID Conversions

Upgrading from OFSA 3.5/4.0 11-27

If you do not designate any Historical Rates IDs in OFSA_TEMP_IRC_45, then the
conversion routine processes the IDs in the ascending order of the rates_sys_id in
IDT_RATES.

OFSA_TEMP_IRC_45

If the Historical Rates ID has priority 1, the associated Historical Rates ID have the
IRC numbering and name preserved in Rate Manager. All other priorities greater
than 1 have the IRC numbering and name preserved if they are unique.

The conversion routine records the mapping of the old Interest Rate Codes and
Name to the new Interest Rate Codes and Names in a temporary table named
OFSA_TEMP_IRC_MAPPING_45. The temporary table has the following format:

OFSA_IRC_TEMP_MAPPING

Column Description

RATES_SYS_ID Unique identifier for the
Historical Rates ID (as
defined in RATES_HISTORY
table). This is the primary
key of this table.

PRIORITY Priority of conversion is a
positive integer starting with
1. This column value has to
be unique.

BASE_CURRENCY_CD The base currency for the
IRC. This is a 3 digit ISO
currency code. It must be a
valid ISO Currency Code
from the list of Functional
Currencies in Chapter 12,
"FDM Database Upgrade
Process".

Column Description

SYS_ID_NUM Unique identifier for the
Historical Rates ID (as
defined in RATES_HISTORY
table)

ID Conversions

11-28 Oracle Financial Services Installation and Configuration Guide

When the conversion routine processes the priority 1 Historical Rates ID, it
preserves the IRC number. Then, it processes the priority 2 ID. If the IRCs in this ID
are unique, the conversion routine preserves the numbering. However, if it
encounters a duplicate IRC, it renumbers it to 1001. The second time it encounters
another duplicate IRC, it renumbers to 1002, then 1003, 1004, and so on.

When the conversion routine processes the priority 1 Historical Rates ID, it preserve
the IRC name. Then, it processes the priority 2 ID. If the IRC name in this ID are
unique, the conversion routine preserves the name. However, if it encounters a
duplicate IRC, it renames it to IRC||<interest_rate_cd>.

The temporary tables are renamed to O_XXXX and they are available to the user
after the upgrade process is complete. Refer to O_OFSA_TEMP_IRC_MAPPING_45
to determine how the conversion routine reassigned interest rate code values.

OLD_INTEREST_RATE_CD Old interest rate code from
IDT_RATES table.

NEW_INTEREST_RATE_CD Newly assigned value for
interest rate code. This
column is also the unique
key.

OLD_IRC_NAME Old description (IRC name)
from IDT_RATES

NEW_IRC_NAME Newly assigned IRC Name.
The description column in
IDT_RATES is 80 characters
long. The new IRC name will
be truncated to 60 characters.

BASE_CURRENCY_CD The base currency for the
IRC. This is a 3 digit ISO
currency code. It must be one
of the seeded currency codes
in OFSA_CURRENCIES

Target Column

OFSA_IRCS

Source Column

TEMP_IRC_MAPPING_45 Special Conversion Logic

INTEREST_RATE_CD INTEREST_RATE_CD Reassign code values for
overlapping IRCs.

Column Description

ID Conversions

Upgrading from OFSA 3.5/4.0 11-29

If any Interest Rate Codes or Names were reassigned because of the existence of
duplicates, you may need to update other database information for the reassigned
values. Interest Rate Codes are used in the following tables and/or processes:

1. All instrument tables

2. Forecast Rates ID within Risk Manager

3. Rate Index ID within Risk Manager

4. Prepayment ID within Risk Manager and Transfer Pricing

5. Transfer Pricing ID within Transfer Pricing

6. Forecast Balance ID within Risk Manager

7. Leaf Characteristics ID within Risk Manager

8. Transaction Strategy ID within Risk Manager

9. Formula Leaves ID within Risk Manager

10. Discount Rates ID within Risk Manager

11. Stochastic Process ID (Valuation Curve Code) within Risk Manager

12. Data Filter Ids within all modules

13. Formula Ids within all modules

14. Report Ids within all modules

15. Repricing Patterns within Risk Manager and Transfer Pricing

16. Budgeting & Planning references

IRC_NAME IRC_NAME Reassign name for
overlapping IRC name.

IRC_FORMAT_CD 0 Apply the value 0 (Zero
Coupon Yield) in all cases.

ISO_CURRENCY_CD BASE_CURRENCY_CD

COMPOUND_BASIS_CD 150 Apply the value 150
(Annual) in all cases.

ACCRUAL_BASIS_CD 3 Apply the value 3
(Actual/Actual) in all cases.

Target Column

OFSA_IRCS

Source Column

TEMP_IRC_MAPPING_45 Special Conversion Logic

ID Conversions

11-30 Oracle Financial Services Installation and Configuration Guide

Within the Rate Manager module, you may want to consolidate date and rate
information from interest rate codes that had existed across Historical Rates IDs. For
example, you may have maintained only the last years’ data in one Historical Rates
ID and all historical dates prior to that for the same Interest Rate Code in another
Historical Rates ID. In this case, you must consolidate the interest rate data within
Rate Manager by cut and paste of rate data from one IRC into another IRC.

Interest Rate Terms
The terms for each IRC are recorded in the OFSA_IRC_RATE_TERMS table. This
table stores all terms associated with each IRC. A summary of the data movement is
provided:

For each interest rate code converted to the tables, a series of terms are also
populated. The logic for converting this data is as follows:

1. Join the TEMP_IRC_MAPPING_45 table to the RATES_HISTORY table by
matching on the IRC and Rates Sys ID where the origination date is equal to
01/01/1901. This isolates the rows from the RATES_HISTORY table that contain
term point data.

2. For each row in the joined table, insert a row into the OFSA_IRC_RATE_TERMS
table, as follows:

■ OFSA_IRC_RATE_TERMS. INTEREST_RATE_CD = Joined table.NEW_
INTEREST_RATE_CD

■ OFSA_IRC_RATE_TERMS. Interest_rate_term = RATES_HISTORY.Interest_
rate_term

■ OFSA_IRC_RATE_TERMS. Interest_rate_term_mult = RATES_
HISTORY.Interest_rate_mult

Target Column

OFSA_IRC_RATE_TERMS

Source Column

TEMP_IRC_MAPPING_45 Special Conversion Logic

INTEREST_RATE_CD INTEREST_RATE_CD Use reassigned code values.

INTEREST_RATE_TERM INTEREST_RATE_TERM

INTEREST_RATE_TERM_MULT INTERERST_RATE_
TERM_MULT

Must be D, M, Y.

ID Conversions

Upgrading from OFSA 3.5/4.0 11-31

3. Validate that all terms represented in the OFSA_IRC_RATE_HIST exist in the
OFSA_IRC_RATE_TERMS table. If any terms exist in the history table that do
not exist in the term table, add the term to the term table. This validation is
performed by comparing distinct values for INTEREST_RATE_CD, INTEREST_
RATE_TERM, and INTEREST_RATE_TERM_MULT from OFSA_IRC_RATE_
HIST table.

Rates Conversion

Records in RATES_HISTORY table with the following attributes are not converted.

■ Interest_rate_term = -1 sets the date up as available date for data entry, it
usually has interest rate of 0

■ Origination_date = 01/01/1901 sets the IRC for term structure setup

The conversion logic is as follows:

1. Join the OFSA_TEMP_IRC_MAPPING_45 table to the RATES_HISTORY table
by matching on the IRC and Rates Sys ID where the origination date is not
equal to 01/01/1901 or the interest rate term is not equal to -1.

Target Column

OFSA_IRC_RATE_HIST

Source Column

RATES_HISTORY Special Conversion Logic

EFFFECTIVE_DATE ORIGINATION_DATE Ignore when row date is
01/01/1901

INTEREST_RATE_CD see Special Conversion
Logic.

Use reassigned code values
from TEMP_IRC_
MAPPING_45.INTEREST_
RATE_CD.

INTEREST_RATE_TERM INTEREST_RATE_TERM Ignore row when interest
rate term is –1.

INTEREST_RATE_TERM_MULT INTEREST_RATE_MULT Must be D, M, Y.

INTEREST_RATE INTEREST_RATE

RATE_DATA_SOURCE_CD 1 Apply 1 (User Input) in all
cases.

LAST_MODIFIED_DATE Current Date Use date when conversion
routine is processed.

ID Conversions

11-32 Oracle Financial Services Installation and Configuration Guide

2. Validate values, as follows:

■ If the interest rate term is <=0, ignore the record and log it as an error
message in rate_manager_conv.log in the log directory.

■ If the interest rate mult is not equal to D, M, or Y, then ignore the record and
log it as an error message in rate_manager_conv.log in the log directory.

3. Then determine which table to write the rate into.

■ OFSA_IRC_RATE_HIST. INTEREST_RATE_CD = Joined table.NEW_
INTEREST_RATE_CD

■ OFSA_IRC_RATE_HIST. Effective_date = RATES_HISTORY.Origination_
date

■ OFSA_IRC_RATE_HIST.Data_source_cd = 1 (all converted rate is coded as
User Input)

■ OFSA_IRC_RATE_HIST.Interest_rate = RATES_HISTORY.Interest_rate

■ OFSA_IRC_RATE_HIST.Last_modified_date is automatically populated
with system date upon insertion

■ OFSA_IRC_RATE_HIST. Interest_rate_term = RATES_HISTORY.Interest_
rate_term

■ OFSA_IRC_RATE_HIST. Interest_rate_term_mult = RATES_
HISTORY.Interest_rate_mult

Leaf Characteristics ID
The Leaf Characteristics ID conversion routine creates a leaf_charc_conv.log file for
messages and information about the conversion.

The mapping logic to the new FDM 4.5 data structure is as follows:

Target Column

OFSA_IDT_LEAF_CHARACTERISTICS

Source Column

OFSA_IDT_TM_DETAILS Special Conversion Logic

LEAF_CHARAC_SYS_ID SYS_ID_NUM Must exist in OFSA_
CATALOG_OF_IDS where
ID_TYPE = 309

LEAF_NODE LEAF_NODE

ISO_CURRENCY_CD N/A 000

ID Conversions

Upgrading from OFSA 3.5/4.0 11-33

For every distinct combination of valid Leaf_Charac_Sys_ID and Leaf_Node in
OFSA_IDT_LEAF_CHARACTERISTICS, the conversion routine creates two
additional rows:

FIELD_NUM FIELD_NUM

INT_VAL INT_VAL

FLOAT_VAL FLOAT_VAL

DATE_VAL DATE_VAL

DEC_VAL DEC_VAL

N/A LEAF_NUM_ID Same as Leaf_Num_ID
stored in Catalog Of IDs; no
longer needed in Leaf
Characteristics table.

Target Column

OFSA_IDT_LEAF_CHARACTERISTICS Special Conversion Logic

LEAF_CHARAC_SYS_ID selected from distinct Leaf_
Charac_Sys_ID + Leaf_Node

LEAF_NODE selected from distinct Leaf_
Charac_Sys_ID + Leaf_Node

ISO_CURRENCY_CD 000 (Special Default
Currency)

FIELD_NUM 1st inserted row: Plug: 5
(Currency Gain/Loss Basis)

2nd inserted row: Plug: 6
(Pay Equivalent
Compounding Convention)

INT_VAL For new Field_Num 5: Plug:
0 (means Temporal)For new
Field_Num 6: Plug: 0 (means
switch is off)

FLOAT_VAL 0

Target Column

OFSA_IDT_LEAF_CHARACTERISTICS

Source Column

OFSA_IDT_TM_DETAILS Special Conversion Logic

ID Conversions

11-34 Oracle Financial Services Installation and Configuration Guide

Maturity Strategy ID
1. OFSA_IDT_MATURITY and OFSA_MATURITY_AUXILIARY

■ Update all the values in ISO_CURRENCY_CD column to 000 (Special
Default Currency)

Pricing Margin ID
1. OFSA_IDT_PRICING_MARGIN

■ Update all the values in ISO_CURRENCY_CD column to 000.

RM Process ID
If you are upgrading from OFSA 3.5, the FDM Database Upgrade Process executes
the logic described in the Upgrades from OFSA 3.5 section before executing the
logic described in the All Upgrades section.

Upgrades from OFSA 3.5

Process Type
Process type is a new input for the Risk Manager Process ID. The following two
process types are available:

■ Scenario-based Processing

■ Stochastic Processing

Any Budget and Planning processes are converted to Scenario-based IDs.

Output Options
Output options include organizational unit output, audit trail output and financial
element output.

DATE_VAL ’01/01/1960’

DEC_VAL 0

Target Column

OFSA_IDT_LEAF_CHARACTERISTICS Special Conversion Logic

ID Conversions

Upgrading from OFSA 3.5/4.0 11-35

For Process IDs that were formerly Budget and Planning processes, one optional
financial element set is selected, during the conversion, for repricing financial
elements.

New Business Leaves
New Business Leaves are no longer necessary for the Process ID and are not
converted.

All Upgrades
1. OFSA_IDT_TM_PROCESS

■ Update all the values in REPORTING_CURRENCY_CD column to be same
as OFSA_DB_INFO.FUNCTIONAL_CURRENCY_CD

2. OFSA_TM_SCENARIO_ASSUMP

■ OUTPUT_BY_ORG_FLG is the new name for what used to be TWO_LEAF_
FLG

■ Update all the values in OUTPUT_BY_CURRENCY_FLG column to 0

■ Update all the values in OUTPUT_FCAST_RATES_FLG column to 0

■ Update all the values in CONSOLIDATED_OUTPUT_FLG column to 0.

3. OFSA_TM_STOCH_ASSUMP

■ For each Term Structure ID map TS_MODEL_CD and SMOOTHING_
METHD_CD to all the RM Process IDs in OFSA_TM_STOCH_ASSUMP
tables that use that Term Structure ID. Term Structure ID is now an obsolete
ID.

The Term Structure ID mapping is as follows:

The rest of the columns in OFSA_TM_STOCH_ASSUMP remain the same.

Target Column

OFSA_TM_STOCH_ASSUMP

Source Column

IDT_TERM_STRUCTURE Special Conversion Logic

TM_PROCESS_SYS_ID

TS_MODEL_CD TS_MODEL_CD

SMOOTHING_METHOD_CD SMOOTHING_METHD_
CD

ID Conversions

11-36 Oracle Financial Services Installation and Configuration Guide

Term Structure ID
The FDM upgrade process converts Term Structure IDs to RM Process IDs. Term
Structure IDs no longer exist in Risk Manager version 4.5. Refer to the RM Process
ID conversion logic for more information.

TP Process ID
The FDM upgrade process migrates data from the IDT_PROCESS table to three new
tables for version 4.5. These new tables are:

■ OFSA_IDT_PROCESS

■ OFSA_TP_PROC_TABLES

■ OFSA_TP_RATE_PROPAGATIONS

The conversion mappings are as follows:

OFSA_IDT_PROCESS

Target Column

OFSA_IDT_PROCESS

Source Column

IDT_PROCESS Special Conversion Logic

TP_PROCESS_SYS_ID SYS_ID_NUM Must exist in OFSA_
CATALOG_OF_IDS where
id_type=204.

CLIENT_SERVER_FLG SWITCH_STATE See below

CALC_MODE_CD SWITCH_STATE See below

TRANSFER_PRICE_SYS_ID PROCESS_SYS_ID See below

PREPAY_SYS_ID PROCESS_SYS_ID See below

FILTER_TYPE ID_TYPE See below

FILTER_SYS_ID PROCESS_SYS_ID See below

DTL_CASHFLOW_FLG SWITCH_STATE See below

SKIP_NONZERO_TRANS_
RATE_FLG

SWITCH_STATE See below

SKIP_NONZERO_OPT_COST_
FLG

NULL None

ID Conversions

Upgrading from OFSA 3.5/4.0 11-37

All flags and codes column logic
IF IDT_PROCESS.PROCESS_TARGET = 2:

1. CLIENT_SERVER_FLG => IDT_PROCESS.SWITCH_CODE = 9

a. IDT_PROCESS.SWITCH_STATE = 1 then CLIENT_SERVER_FLG = 0 else
CLIENT_SERVER_FLG = 1.

b. Default: 1 (Use client)

2. CALC_MODE_CD => IDT_PROCESS.SWITCH_CODE = 3

a. CALC_MODE_CD = IDT_PROCESS.SWITCH_STATE

b. Default: 0 (Standard mode)

3. DTL_CASHFLOW_FLG =>IDT_PROCESS.SWITCH_CODE =17

a. DTL_CASHFLOW_FLG = IDT_PROCESS.SWITCH_STATE

b. Default: NULL (Write Detail Cash Flow is not checked)

4. SKIP_NONZERO_TRANS_RATE_FLG => IDT_PROCESS.SWITCH_CODE =19

a. SKIP_NONZERO_TRANS_RATE_FLG=IDT_PROCESS.SWITCH_STATE

b. Default: NULL (Skip Non Zero Transfer Rates is not checked)

5. TRANS_RATE_PROPAGATE_FLG => IDT_PROCESS.SWITCH_CODE =18

a. TRANS_RATE_PROPAGATE_FLG = IDT_PROCESS.SWITCH_STATE

b. Default: NULL (Transfer Rate Propagate is not checked)

6. TRANS_RATE_CALC_FLG => IDT_PROCESS.SWITCH_CODE =18

TRANS_RATE_PROPAGATE_
FLG

SWITCH_STATE See below

TRANS_RATE_CALC_FLG SWITCH_STATE See below

TRANS_RATE_MIGRATE_FLG SWITCH_CODE See below

OPTION_COST_PROPAGATE_
FLG

NULL None

OPTION_COST_CALC_FLG NULL None

OPTION_COST_MIGRATE_FLG NULL None

Target Column

OFSA_IDT_PROCESS

Source Column

IDT_PROCESS Special Conversion Logic

ID Conversions

11-38 Oracle Financial Services Installation and Configuration Guide

a. If IDT_PROCESS.SWITCH_CODE = 18 has an entry in IDT_PROCESS then
TRANS_RATE_CALC_FLG = 0 else TRANS_RATE_CALC_FLG = 1.

b. Default: 1 (Transfer Rate Calculation Flag is checked)

7. TRANS_RATE_MIGRATE_FLG

a. IF IDT_PROCESS.SWITCH_CODE = 0 (Instrument table is checked) and
IDT_PROCESS.SWITCH_CODE = 1 (Ledger_stat table is checked) have
entries for this TP_PROCESS_SYS_ID then TRANS_RATE_MIGRATE_FLG
= 1 else TRANS_RATE_MIGRATE_FLG=0.

b. Default: 0 (Transfer Rate Migrate is not checked)

All Assumption IDs column logic
IF IDT_PROCESS.PROCESS_TARGET = 1:

1. TRANSFER_PRICE_SYS_ID => IDT_PROCESS.ID_TYPE=200

a. IDT_TP_PROCESS.TRANSFER_PRICE_SYS_ID = IDT_
PROCESS.PROCESS_SYS_ID

b. IDT_TP_PROCESS.PROCESS_SYS_ID has to exist in OFSA_CATALOG_
OF_IDS where id_type=200.

c. Default: 0

2. FILTER_SYS_ID and FILTER_TYPE => IDT_PROCESS.ID_TYPE = 4,8,21(Data,
Tree and Group Filter)

a. IDT_PROCESS.FILTER_TYPE = IDT_PROCESS.ID_TYPE

b. IDT_PROCESS.FILTER_SYS_ID = IDT_PROCESS.PROCESS_SYS_ID

c. IDT_PROCESS.PROCESS_SYS_ID has to exist in OFSA_CATALOG_OF_
IDS where id_type = IDT_PROCESS.ID_TYPE. If not exist, do not migrate it
over.

d. Default: NULL

3. PREPAY_SYS_ID = > IDT_PROCESS.ID_TYPE=300

a. IDT_PROCESS.FILTER_SYS_ID = IDT_PROCESS.PROCESS_SYS_ID

Note: If the SWITCH_CODE does not have entries for this TP_
process_sys_id, then the conversion routine uses the default values.

ID Conversions

Upgrading from OFSA 3.5/4.0 11-39

b. IDT_PROCESS.PROCESS_SYS_ID has to exist in OFSA_CATALOG_OF_
IDS where id_type = 300. If not exist, do not migrate it over.

c. Default: NULL

OFSA_TP_PROC_TABLES

OFSA_TP_RATE_PROPAGATIONS

Note: If the ID_TYPE does not have entries for this TP_PROCESS_
SYS_ID, then the conversion routine uses the default values.

Target Column

OFSA_TP_PROC_TABLES

Source Column

IDT_PROCESS Special Conversion Logic

TP_PROCESS_SYS_ID SYS_ID_NUM Must exist in OFSA_IDT_
TP_PROCESS.

TABLE_NAME TABLE_NAME If the process id has IDT_
PROCESS.PROCESS_
TARGET = 2 and IDT_
PROCESS.SWITCH_CODE
= 1, add ‘LEDGER_STAT’ as
the process target table.

For each entry that has IDT_
PROCESS.PROCESS_
TARGET=3, add IDT_
PROCESS.TABLE_NAME as
the process target table.

Target Column

OFSA_TP_RATE_PROPAGATIONS

Source Column

IDT_PROCESS Special Conversion Logic

TP_PROCESS_SYS_ID SYS_ID_NUM Must exist in OFSA_IDT_
TP_PROCESS.

PROPAGATE_TARGET_TABLE TABLE_NAME For each TABLE_NAME in
OFSA_TP_PROC_TABLES
except LEDGER_STAT.

ID Conversions

11-40 Oracle Financial Services Installation and Configuration Guide

Transaction Strategy ID
The Transaction Strategy ID conversion routine creates a trans_strategy_conv.log
file for messages and information about the conversion.

The mapping logic to the new FDM 4.5 data structure is as follows:

PROPAGATE_SOURCE_TABLE TABLE_NAME Where IDT_
PROCESS.PROCESS_
TARGET = 5 and IDT_
PROCESS.PROCESS_SYS_
ID = PROCESS_SYS_ID of
the table_name used for the
PROPAGATE_TARGET_
TABLE field.

PROPAGATE_LAG_TERM SWITCH_STATE Where IDT_
PROCESS.PROCESS_
TARGET = 5 and IDT_
PROCESS.PROCESS_SYS_
ID = PROCESS_SYS_ID of
the table_name used for the
PROPAGATE_TARGET_
TABLE field.

PROPOGATE_LAG_MULT SWITCH_CODE Where IDT_
PROCESS.PROCESS_
TARGET = 5 and IDT_
PROCESS.PROCESS_SYS_
ID = PROCESS_SYS_ID of
the table_name used for the
PROPAGATE_TARGET_
TABLE field.

IDT_PROCESS.SWITCH_
CODE => 1 = ‘M’, 2 = ‘Y’,
3=’D’.

Target Column

OFSA_IDT_TRANS_STRATEGIES

Source Column

OFSA_IDT_TM_DETAILS Special Conversion Logic

TRANSACTION_SYS_ID SYS_ID_NUM Must exist in OFSA_
CATALOG_OF_IDS where
ID_TYPE = 306

Target Column

OFSA_TP_RATE_PROPAGATIONS

Source Column

IDT_PROCESS Special Conversion Logic

ID Conversions

Upgrading from OFSA 3.5/4.0 11-41

For every distinct combination of valid Transaction_Sys_ID and Transaction_Num
in OFSA_IDT_TRANS_STRATEGIES, the conversion routine creates an additional
row for the ISO_CURRENCY_CD:

TRANSACTION_NUM LEAF_NUM_ID

LEAF_NODE LEAF_NODE

FIELD_NUM FIELD_NUM Add 1 to Field_Num where
existing Field_Num > 0.
This allows insertion of row
for Currency Code.

ISO_CURRENCY_CD N/A Plug with OFSA_DB_
INFO.Functional_Currency_
Cd.

INT_VAL INT_VAL

FLOAT_VAL FLOAT_VAL

DATE_VAL DATE_VAL

DEC_VAL DEC_VAL

Target Column

OFSA_IDT_TRANS_STRATEGIES Special Conversion Logic

TRANSACTION_SYS_ID select from distinct
Transaction_Sys_ID +
Transaction_Num

TRANSACTION_NUM select from distinct
Transaction_Sys_ID +
Transaction_Num

LEAF_NODE associated Leaf_Node

FIELD_NUM 1

ISO_CURRENCY_CD OFSA_DB_INFO.
FUNCTIONAL_
CURRENCY_CD

INT_VAL 0

Target Column

OFSA_IDT_TRANS_STRATEGIES

Source Column

OFSA_IDT_TM_DETAILS Special Conversion Logic

ID Conversions

11-42 Oracle Financial Services Installation and Configuration Guide

Transfer Pricing ID
The FDM upgrade process migrates data from the IDT_TRANSFER_PRICE and TP_
AUXILIARY tables to 3 new tables for version 4.5. These new tables are:

■ OFSA_IDT_TRANSFER_PRICE

■ OFSA_TP_REDEMPTION_CURVE_DTL

■ OFSA_TP_UNPRICED_ACCT_DTL

The conversion mappings are as follows:

OFSA_IDT_TRANSFER_PRICE

FLOAT_VAL 0

DATE_VAL ’01/01/1960’

DEC_VAL 0

Target Column

OFSA_IDT_TRANSFER_PRICE

Source Column

IDT_TRANSFER_PRICE Special Conversion Logic

TRANSFER_PRICE_SYS_ID SYS_ID_NUM Must exist in OFSA_
CATALOG_OF_IDS where
id_type=200.

LEAF_VALUE LEAF_NODE NONE

LEAF_DATA_SOURCE_CD METHOD_TYPE If IDT_TRANSFER_
PRICE.METHOD_TYPE= 7
then LEAF_DATA_
SOURCE_CD = 2 else
LEAF_DATA_SOURCE_CD
= 1.

Target Column

OFSA_IDT_TRANS_STRATEGIES Special Conversion Logic

ID Conversions

Upgrading from OFSA 3.5/4.0 11-43

TP_CALC_METHOD_CD METHOD_TYPE IDT_TRANSFER_
PRICE.METHOD_TYPE =
9(Migrate Rates Only
method) is no longer
supported in release 4.5. All
of the records that have
method_type=9 will have
TP_CALC_METHOD_CD
set to 0 (None).

GROSS_RATE_FLG 0 Apply to all. The Model
With Gross Rates switch
moves from TP Process ID
to Transfer Pricing ID.

INTEREST_RATE_CD INTEREST_RATE_CD NONE

YIELD_CURVE_TERM MATURITY_FREQ NONE

YIELD_CURVE_MULT MATURITY_FREQ_
MULT

NONE

HISTORICAL_TERM HISTORY_FREQ NONE

HISTORICAL_MULT HISTORY_FREQ_MULT NONE

ASSIGNMENT_DATE_CD ORG_DATE_CD If IDT_TRANSFER_
PRICE.ORG_DATE_CODE=
0 then ASSIGNMENT_
DATE_CD = NULL else
ASSIGNMENT_DATE_CD
= IDT_TRANSFER_
PRICE.ORG_DATE_CODE.

OPTION_COST_METHOD_CD 0 Apply to all

TARGET_BAL_CD NULL NONE

RATE_SPREAD RATE_SPREAD NONE

LAG_TERM LAG_FREQ NONE

LAG_MULT LAG_FREQ_MULT NONE

ACROSS_ORG_UNIT_FLG ACROSS_ORG_UNIT NONE

Target Column

OFSA_IDT_TRANSFER_PRICE

Source Column

IDT_TRANSFER_PRICE Special Conversion Logic

ID Conversions

11-44 Oracle Financial Services Installation and Configuration Guide

Data is not converted where:

1. IDT_TRANSFER_PRICE.SYS_ID_NUM does not exist in OFSA_CATALOG_
OF_IDS.

2. IDT_TRANSFER_PRICE.INTEREST_RATE_CD does not exist in OFSA_IRCS.

OFSA_TP_REDEMPTION_CURVE_DTL
If IDT_TRANSFER_PRICE.METHOD_TYPE = 8, convert the Transfer Pricing ID
data from TP_AUXILIARY to OFSA_TP_REDEMPTION_CURVE_DTL using the
following mappings:

MID_PERIOD_REPRICE_FLG MID_PERIOD If IDT_TRANSFER_
PRICE.MID_PERIOD > 0
then MID_PERIOD_
REPRICE_FLG = 1 else
MID_PERIOD_REPRICE_
FLG = 0

Target Column

OFSA_TP_REDEMPTION_CURVE_DTL

Source Column

TP_AUXILIARY Special Conversion Logic

TRANSFER_PRICE_SYS_ID TRANSFER_SYS_ID Must exist in OFSA_IDT_
TRANSFER_PRICE

LEAF_VALUE LEAF_NODE Must exist in OFSA_IDT_
TRANSFER_PRICE

INTEREST_RATE_CD See Special Conversion
Logic

Retrieve from IDT_
TRANSFER_
PRICE.INTEREST_RATE_
CD WHERE TP_
AUXILIARY.TRANSFER_
SYS_ID = IDT_TRANSFER_
PRICE.SYS_ID_NUM and
TP_AUXILIARY.LEAF_
NODE=IDT_TRANSFER_
PRICE.LEAF_NODE.

INTEREST_RATE_TERM MATURITY_FREQ NONE

INTEREST_RATE_TERM_MULT MATURITY_FREQ_
MULT

NONE

Target Column

OFSA_IDT_TRANSFER_PRICE

Source Column

IDT_TRANSFER_PRICE Special Conversion Logic

ID Conversions

Upgrading from OFSA 3.5/4.0 11-45

Data is not converted where:

1. TP_AUXILIARY.TRANSFER_SYS_ID + TP_AUXILIARY.LEAF_NODE does not
exist in OFSA_IDT_TRANSFER_PRICE.

2. Combination of INTEREST_RATE_CD,INTEREST_RATE_TERM,INTEREST_
RATE_TERM_MULT does not exist in OFSA_IRC_RATE_TERMS.

OFSA_TP_UNPRICED_ACCT_DTL
If IDT_TRANSFER_PRICE.METHOD_TYPE = 7, convert the Transfer Pricing ID
data from TP_AUXILIARY to OFSA_TP_UNPRICED_ACCT_DTL using the
following mappings:.

Data is not converted where:

1. The combination of TP_AUXILIARY.TRANSFER_SYS_ID and TP_
AUXILIARY.LEAF_NODE does not exist in OFSA_IDT_TRANSFER_PRICE.

PERCENTAGE PERCENTAGE NONE

Target Column

OFSA_TP_UNPRICED_ACCT_DTL

Source Column

TP_AUXILIARY Special Conversion Logic

TRANSFER_PRICE_SYS_ID TRANSFER_SYS_ID Must exist in OFSA_IDT_
TRANSFER_PRICE

LEAF_VALUE LEAF_NODE Must exist in OFSA_IDT_
TRANSFER_PRICE

SOURCE_LEAF_VALUE TRANSFER_LEAF NONE

Target Column

OFSA_TP_REDEMPTION_CURVE_DTL

Source Column

TP_AUXILIARY Special Conversion Logic

ID Conversions

11-46 Oracle Financial Services Installation and Configuration Guide

FDM Database Upgrade Process 12-1

12
FDM Database Upgrade Process

This chapter discusses the procedure for upgrading Oracle Financial Services
(OFSA) 3.5/4.0 version databases to the Oracle Financial Data Manager (FDM)
database version 4.5. This procedure supports upgrading from OFSA Release 3.5
and 4.0 databases.

The following topics are covered in this chapter:

■ Overview of the 4.5 Upgrade Process

■ Required Oracle Parameters for the FDM Upgrade Process

■ Running the Metadata Migration

■ Running the Upgrade Procedure

■ Password Encryption Changes

■ OFSA Database Problem Conditions and Solutions

The upgrade scripts for this procedure are on the same media as the server-centric
software. The default location for both the scripts and working directory is the
OFSA_INSTALL/dbs/<OFSA release> subdirectory of your OFSA installation

12-2 Oracle Financial Services Installation and Configuration Guide

directory. In this chapter, OFSA_INSTALL is the convention used to indicate where
the OFSA software is installed in your directory structure.

Before running the upgrade procedure, be sure to review Chapter 11, "Upgrading
from OFSA 3.5/4.0" for database changes in FDM 4.5.

Note: Oracle recommends that you run the Migrate_Check step of
the upgrade procedure at least 3 weeks prior to beginning the FDM
Database Upgrade Process. The Migrate_Check step identifies data
inconsistencies with your database that must be resolved in order
for the FDM upgrade to proceed. In order to resolve these issues,
you need assistance from the OFSA end-users. Oracle recommends
that you reserve sufficient time to resolve these issues prior to
continuing with the FDM database upgrade process. The Migrate_
Check step does not perform any structural changes to your
database, so you can run the Migrate_Check step as many times as
you need while continuing to use your database with OFSA 3.5 or
4.0.

Note: Market Manager version 4.0.3 is compatible with an FDM
4.5 database with the Market Manager objects installed. The FDM
4.5 database upgrade process therefore preserves the database
objects required for Market Manager version 4.0.3.

Caution:

■ The scripts must remain in a single directory during the
upgrade procedure.

■ The following tablespaces are required for the database
upgrade procedure: DATA_TS and INDEX_TS. If these are not
available, you cannot complete the database upgrade.

Overview of the 4.5 Upgrade Process

FDM Database Upgrade Process 12-3

Overview of the 4.5 Upgrade Process
The 4.5 Database Upgrade Process introduces significant changes to the FDM
database structure. The changes include:

■ Elimination of Password Encryption for individual users

■ OFSA_ prefix for all application database objects

■ Addition of database structures to support Multiple languages

■ Addition of database structures to support Multiple currencies

■ Creation of individual Code Description tables

These changes are detailed in Chapter 11, "Upgrading from OFSA 3.5/4.0". It is
recommended that you review this chapter before beginning the upgrade process.

The upgrade process consists of running the following steps in order:

■ Running the Metadata Migration

■ Running the Upgrade procedure

■ Installing and Configuring Discoverer (See Chapter 13, "Installing and
Configuring Discoverer".)

Limitations to the Database Upgrade Process
Before you begin, review the following limitations to assess the impact on your
upgrade:

Instrument Table Indexes
The upgrade process cannot create indexes on your instrument tables intelligently
because each organization customizes its database according to its unique needs.
Therefore, no instrument or client data table indexes are created as part of the
upgrade. It is left to you to create these indexes according to the general guidelines
discussed in this manual.

Multiple LEDGER_STAT Tables (data_code = 7)
FDM 4.5 only supports a single LEDGER_STAT table. The FDM Database Upgrade
Process does not migrate any other table names in SYSTEM_INFO assigned to data_
code=7 (the Ledger_Stat data_code). Only the LEDGER_STAT table is migrated.
OFSA versions 3.5 and 4.0 also did not support having table names other than
LEDGER_STAT assigned to data_code 7.

Required Oracle Parameters for the FDM Upgrade Process

12-4 Oracle Financial Services Installation and Configuration Guide

If you do have table names other than LEDGER_STAT assigned to data_code=7,
assign them to data_code = 10 (User Defined) prior to beginning the FDM upgrade
process. The FDM Database Upgrade Process then migrates those objects as User
Defined to the new FDM Metadata structure.

Seeded Data Tables and Ranges Affected by the Upgrade
Oracle defines seeded data as: 1) Data placed in the database to run the OFS
applications properly; and 2) Data that makes up the IDs shipped with the
database.

For some tables, Oracle reserves the entire table for internal use. This means that
any user-defined rows in the tables are deleted by the upgrade process. For other
tables, Oracle reserves only a seeded range. User-defined rows are permitted within
a specified range. For a complete list of seeded data tables and ranges, refer to
Chapter 16, "FDM Object Management".

Required Oracle Parameters for the FDM Upgrade Process
The FDM Upgrade Process requires that you set the following initialization
parameters prior to running the upgrade. Specify these parameters in the
init<dbname>.ora file where <dbname> is the Oracle SID of your database. After
specifying these parameters, you must shutdown your database and restart it prior
to running the FDM Upgrade Process.

For a list of Oracle parameters recommended for your FDM database, refer to
Chapter 10, "FDM Database Installation".

■ compatible

FDM requires that this parameter is set to 8.1.6 or higher.

COMPATIBLE lets you use a new release, while at the same time guaranteeing
backward compatibility with an earlier release. This ability is helpful in case it
becomes necessary to revert to the earlier release.

Caution: The initialization parameters specified in this section are
required for the FDM database. If you do not set your Oracle
initialization parameters as specified, your upgrade process may
not complete successfully and your FDM database may not
function properly.

Required Oracle Parameters for the FDM Upgrade Process

FDM Database Upgrade Process 12-5

■ dml_locks

FDM requires that this parameter is set to at least 200.

A DML lock is a lock obtained on a table that is undergoing a DML operation
(insert, update, delete). DML_LOCKS specifies the maximum number of DML
locks--one for each table modified in a transaction. The value should equal the
grand total of locks on tables currently referenced by all users. For example, if
three users are modifying data in one table, then three entries would be
required. If three users are modifying data in two tables, then six entries would
be required.

■ job_queue_processes

FDM requires that this parameter is set to at least 1 (maximum value is 36).

JOB_QUEUE_PROCESSES specifies the number of SNPn job queue processes
per instance (SNP0, ... SNP9, SNPA, ... SNPZ). Job queue processes process
requests created by DBMS_JOB.

■ max_enabled_roles

FDM requires that the max_enabled_roles parameter is set to at least 60. This is
because the FDM database creation and database upgrade processes create a
number of seeded roles in the database instance.

MAX_ENABLED_ROLES specifies the maximum number of database roles that
users can enable, including roles contained within other roles.

■ open_cursors

Specifies the maximum number of open cursors (context areas) a session can
have at once. This constrains a session from opening an excessive number of
cursors. Oracle recommends a value of 500 to accommodate the FDM Database
Upgrade Process and OFS applications multiprocessing.

■ shared_pool_size

SHARED_POOL_SIZE specifies in bytes the size of the shared pool. The shared
pool contains shared cursors, stored procedures, control structures, and other
structures. The FDM Database Upgrade Process requires an appropriate value
for the shared_pool_size parameter in order to complete successfully. Oracle
recommends a value of 50000000 or more for this parameter in order to ensure
adequate resources for the FDM Database Upgrade Process.

Running the Metadata Migration

12-6 Oracle Financial Services Installation and Configuration Guide

Running the Metadata Migration
The OFSA 4.5 Database Upgrade Process includes a migration to a new metadata
structure. This new metadata structure supports new features for object and
security administration with the Financial Data Manager Administration
application. Migration to this new metadata structure is the first step in the OFSA
4.5 Database Upgrade Process.

The Metadata Migration includes the following steps:

1. Review Migration Requirements

2. Prepare Database for Migration

3. Run the migrate_check.sql

4. Run the migrate.sql

5. Review Migrate Logs

Review Migration Requirements
Prior to running the Migration procedure, review the following conversion
requirements:

Historical Rates Conversion
The Rate Manager application requires that the Historical Rates IDs from OFSA
3.5/4.0 are converted into a new format for version 4.5. Previously in OFSA 3.5/4.0,
it was possible for Interest Rate Codes and Names to exist across different Historical
Rates IDs. The Rate Manager application requires that Interest Rate Codes and
Names are unique within the database. Because of this, Oracle recommends that
you specify the precedence for Historical Rates ID for the conversion.

The Migrate procedure creates the OFSA_TEMP_IRC_45 during the initial
execution. The Migrate procedure then prompts as follows:

The OFSA_TEMP_IRC_45 table is empty. If you do not setup the
OFSA_TEMP_IRC_45 table, the DUP will convert your IRCs in the ascending
order of the Historical Rates ID sys_id_num. It is recommended that
you setup the OFSA_TEMP_IRC_45 table before you run the migration process.

To setup this table exit the migration procedure.

Do you want to exit and setup the OFSA_TEMP_IRC_45 table?(y/n):

Running the Metadata Migration

FDM Database Upgrade Process 12-7

If you have multiple Historical Rates IDs in your OFSA 3.5/4.0 database that you
want to convert to the new Rate Manager format, select Y to exit the Migrate
procedure and setup your Historical Rates ID conversion information. If you
actively use only one Historical Rates ID in OFSA 3.5/4.0, then you do not need to
setup the OFSA_TEMP_IRC_45 table prior to running the Metadata Migration. In
this case, select N to continue with the Migrate procedure.

Setup for OFSA_TEMP_IRC_45
The OFSA_TEMP_IRC_45 table is used to designate the Base Currency and
conversion priority for the Historical Rates IDs. Use SQL*Plus insert statements to
setup this table. For example:

insert into ofsa_temp_irc_45 (rate_sys_id, priority, base_currency_cd)
values (100332, 1, ’USD’);

The RATE_SYS_ID value must be a valid Historical Rates ID. The PRIORITY value
is the precedence in which want to convert your Historical Rates ID. Assign a value
of 1 to your primary Historical Rates ID. The BASE_CURRENCY_CD is the ISO
Currency used for the Historical Rates conversion. The For a list of valid Currencies,
refer to Appendix A, "Functional Currencies".

If you have multiple Historical Rates IDs and you do not specify the Priority and
Currency in the OFSA_TEMP_IRC_45 table, the upgrade process converts your IDs
in the ascending order of the sys_id_num. The sys_id_num identifies each ID in the
CATALOG_OF_IDS table. The conversion then renames and renumbers any cases
where a duplicate IRC name exists across multiple Historical Rates IDS. Refer to O_
OFSA_TEMP_IRC_MAPPING_45 to determine how the conversion routine
reassigned interest rate code values.

Note: The first time you run the Migrate Check procedure, it
creates an empty OFSA_TEMP_IRC_45 table. If you want to
convert multiple Historical Rates ID, you should exit the Migrate
procedure to setup your Historical Rates ID conversion precedence
information and then launch Migrate a second time to complete the
procedure.

Note: Refer to Chapter 11, "Upgrading from OFSA 3.5/4.0" for
detailed information about the Historical Rates ID conversion.

Running the Metadata Migration

12-8 Oracle Financial Services Installation and Configuration Guide

Functional Currency
The Migration procedure requires the specification of a Functional Currency in the
table OFSA_TEMP_DB_INFO. This table is created by the Migrate process during
its initial execution. The first time that you run the Migrate procedure, this table is
created (empty) and the Migrate procedure then records an error in the migrate_
check.log file indicating that you need to specify the Functional Currency.

Functional Currency is defined as the currency of the primary economic
environment in which an entity conducts its business. In a single currency
environment, you need only specify your currency code. In a multiple currency
environment, specify the currency used by the parent organization for financial
statement reporting.

The FDM database upgrade process sets all Client Data Tables (such as Instrument
tables, LEDGER_STAT, etc.) with the ISO_CURRENCY_CD column to default to the
specified Functional Currency whenever a value is not explicitly designated during
an insert.

If you do not specify a Functional Currency, the Migrate procedure outputs the
following error to the migrate_check.log file:

ERROR! Functional Currency Code not defined in OFSA_TEMP_DB_INFO.

Note: In most cases, only one Historical Rates ID needs to be
converted into the 4.5 Rate Manager format. Only in situations
where you are actively using multiple Historical Rates ID do you
need to specify the conversion priority in the OFSA_TEMP_IRC_45
table. If you do designate Historical Rates Ids in the OFSA_TEMP_
IRC_45, only the IDs specified in the table are converted. Any other
Historical Rates Ids that exist in the database but are not specified
in OFSA_TEMP_IRC_45 are not converted

Note: The first time you run the Migrate Check procedure, it
creates an empty OFSA_TEMP_DB_INFO table and reports an
error that the Functional Currency is not specified in this table.
Once you have specified a Functional Currency in this table, you
need to launch Migrate Check a second time to verify that all errors
are resolved before you proceed.

Running the Metadata Migration

FDM Database Upgrade Process 12-9

To resolve this you must update the OFSA_TEMP_DB_INFO table with a valid
Currency from the list of Functional Currencies in Appendix A, "Functional
Currencies". Refer to OFSA Database Problem Conditions and Solutions for details
on this solution.

Prepare Database for Migration
Follow these steps to prepare the database.

1. Unset the ORACLE_PATH and SQL_PATH environment variables so that
custom SQL scripts are not executed in place of the upgrade SQL scripts. The
command line entries are:

unset ORACLE_PATH
unset SQL_PATH

2. Verify that your $ORACLE_SID points to the correct ORACLE instance on the
server.

echo $ORACLE_SID

3. Remove any tables in the current schema that have the prefix O_ (the letter O
followed by an underscore).

The following SQL statement identifies tables with the O_ prefix:

SELECT distinct table_name
FROM all_tables
WHERE table_name like ’O_%’ escape ’\’;

The O_ prefix is reserved for the OFSA database upgrade procedure. If you do
not remove these tables from your system, you receive a problem warning
message in the check.log file.

4. Ensure that the minimum following space is available before you begin:

Caution: Unsetting these environment variables is essential. If you
do not, you will create problems during the upgrade procedure.

Running the Metadata Migration

12-10 Oracle Financial Services Installation and Configuration Guide

5. Login to SQL*Plus as SYS and load the initjvm.sql package into the database.

The initjvm package is required for FDM 4.5. This Oracle RDBMS package
provides the necessary environment for java class to operate within the
database. The package is normally found in the following directory location:

$ORACLE_HOME/javavm/install/initjvm.sql

To load the initjvm.sql package, go to the directory where the initjvm.sql script
is located, login to SQL*Plus as the SYS user and type the following:

SQL> spool initjvm.log
SQL> @initjvm.sql

Review the spooled logfile after the initjvm.sql script has completed in order to
verify that there were no significant errors. The initjvm.sql script normally
requires several minutes to complete.

SYSTEM tablespace 85 MB (minimum) if initjvm.sql not run

10 MB (minimum) if initjvm.sql already run

DATA_TS tablespace 50 MB (minimum)

INDEX_TS tablespace 50 MB (minimum)

UNIX file system 10 MB for log files and temporary files

Note: These freespace requirements pertain only to completing
the Migrate procedure. Additional freespace is required to complete
the remaining steps of the FDM Database Upgrade Process. These
additional freespace requirements are documented in Running the
Upgrade Procedure.

Note: Always spool to a logfile prior to running the initjvm.sql.
After the script is complete, review the spooled logfile for errors.
Ignore any object-not-found errors for drop table, drop index, drop
package, and other drop object statements.

Running the Metadata Migration

FDM Database Upgrade Process 12-11

6. Shut down the Oracle listener.

7. Shut down and restart the database.

This guarantees that no one but the System Administrator is accessing the
database during the upgrade procedure and ensures that any new initialization
parameters take effect.

Run migrate_check.sql
Follow these steps to run migrate_check.sql. In this section the
OFSA_INSTALL/dbs/<OFSA release> directory is referred to as the database
upgrade home directory, or <Upgrade home dir>.

1. In UNIX, change the directory to the <Upgrade home dir> directory.

2. Log into SQL*Plus as SYS using the following command line entry:

sqlplus SYS/<password>

Note: It is critical to run the initjvm.sql script before proceeding
with the update process. This package is required for the new FDM
security framework. Be sure that you have at least 75MB of free
space in the SYSTEM tablespace prior to running this package.

Note: Oracle recommends that you run the Migrate_Check step of
the upgrade procedure at least 3 weeks prior to beginning the FDM
Database Upgrade Process. The Migrate_Check step identifies data
inconsistencies with your database that must be resolved in order
for the FDM upgrade to proceed. In order to resolve these issues
you need assistance from the OFSA end-users. Oracle recommends
that you reserve sufficient time to resolve these issues prior to
continuing with the FDM database upgrade process. The Migrate_
Check step does not perform any structural changes to your
database, so you can run the Migrate_Check step as many times as
you need while continuing to use your database with OFSA 3.5 or
4.0.

Running the Metadata Migration

12-12 Oracle Financial Services Installation and Configuration Guide

3. Run the cr_owner.sql script, which is in the <Upgrade home dir>/master
directory, to grant additional privileges to the database owner. It prompts you
for the name of the OFSA database owner. Prior to running the script, use the
SQL*Plus spool command to redirect any error messages to a log file.

SQL> @master/cr_owner

Ignore the following error messages when they appear:

ORA-01920: user name <owner_name> conflicts with another user or role
name

ORA-01921: role name <name> conflicts with another user or role name

4. Connect as the database owner using the following command line entry:

SQL> connect <owner_name>/<password>

5. Execute the pre-migrate check process using the following command line entry:

SQL> @migrate/migrate_check <Password> <Upgrade home dir> <Sql*Loader
executable>

<Password> This is the password for the database owner, to invoke
SQL*Loader.

<Upgrade home dir> This is the full path to the database upgrade home
directory as previously described. Do not enter a trailing / character.

An example of a full path follows:

/app/ofsa/ofsa4.0-092/dbs/450001010

<Sql*Loader executable> This is the command used to execute SQL*Loader. For
most Oracle installations, this command is sqlldr.

6. Review the migrate_check.log file created in the <Upgrade home dir>/log
directory, for any problem conditions.

If error conditions appear in the migrate_check.log file, refer to "OFSA Database
Problem Conditions and Solutions" to resolve them. If there are problems you
cannot correct, contact Oracle Support Services. The support staff can review
the error messages with you to help resolve your problem.

You can ignore the following error messages when they appear:

ORA-00001: Unique constraint violated
ORA-00942: Table or view does not exist
ORA-00955: Name is already used by an existing object
ORA-02289: Sequence does not exist

Running the Metadata Migration

FDM Database Upgrade Process 12-13

7. After making any necessary adjustments rerun migrate_check.sql to verify that
all problems have been addressed and corrected.

Run migrate.sql
Follow these steps to run migrate.sql. In this section the
OFSA_INSTALL/dbs/<OFSA release> directory is referred to as the database
upgrade home directory, or <Upgrade home dir>.

1. In UNIX, change the directory to the <Upgrade home dir> directory.

2. Log into SQL*Plus as SYS using the following command line entry:

sqlplus SYS/<password>

3. Run the cr_owner.sql script, which is in the <Upgrade home dir>/master
directory, to grant additional privileges to the database owner. It then prompts
you for the name of the OFSA database owner. Prior to running the script, use
the SQL*Plus spool command to redirect any error messages to a log file.

SQL> @master/cr_owner

Ignore the following error messages when they appear:

ORA-01920: user name <owner_name> conflicts with another user or role

Note: Be aware that the migrate_check.log file is overwritten
every time you run migrate_check.sql. Rename the migrate_
check.log file if you want to compare it against files you generate in
the future.

Note: Once the Metadata Migration is complete, the FDM
database is not accessible from any of the OFS applications until the
entire FDM Database Upgrade Process is complete. Any changes to
OFSA IDs that you want to perform on the database using the OFS
applications must be completed prior to running the Metadata
Migration procedure. Once the entire FDM Database Upgrade
Process is completed (which includes the generate_upgrade and
upgrade steps), the database is accessible by the 4.5 version of the
OFS applications.

Running the Metadata Migration

12-14 Oracle Financial Services Installation and Configuration Guide

name

ORA-01921: role name <name> conflicts with another user or role name

4. Connect as the database owner using the following command line entry:

SQL> connect <owner_name>/<password>

5. Execute the migrate step of the upgrade procedure. migrate.sql takes the
following input parameters:

<Password> This is the password for the database owner, to invoke
SQL*Loader.

<Upgrade home dir> This is the full path to the database upgrade home
directory as previously described. Do not enter a trailing / character.

An example of a full path follows:

/app/ofsa/ofsa4.0-092/dbs/450001010

<Sql*Loader executable> This is the command used to execute SQL*Loader. For
most Oracle installations, this command is sqlldr.

If you run migrate.sql with no command line parameters, it prompts you for
them. It hen prompt you to confirm that the parameters you entered are correct.

SQL> @migrate/migrate

Or:

SQL> @migrate/migrate <Password> <Upgrade home dir> <Sql*Loader
executable>

Historical Rates Conversion

If you have not specified the priority for converting Historical Rates IDs in
OFSA_TEMP_IRC_45, the migrate procedure displays the following warning:

The OFSA_TEMP_IRC_45 table is empty. If you do not setup the
OFSA_TEMP_IRC_45 table, the DUP will convert your IRCs in the ascending
order of the Historical Rates ID sys_id_num. It is recommended that
you setup the OFSA_TEMP_IRC_45 table before you run the migration process.

To setup this table exit the migration procedure.

Do you want to exit and setup the OFSA_TEMP_IRC_45 table?(y/n):

Refer to Review Migration Requirements for details about the Historical Rates
ID conversion.

Running the Metadata Migration

FDM Database Upgrade Process 12-15

Select y to exit the procedure and setup your Historical Rates ID conversion
precedence, or select n to continue with the procedure.

Functional Currency

If you select n for the Historical Rates ID conversion prompt, the Migrate then
validates your Functional Currency section in OFSA_TEMP_DB_INFO. If you
did not correctly specify a Functional Currency in this table, one of the
following errors appears:

"ERROR! Functional Currency Code not defined in OFSA_TEMP_DB_INFO."

"ERROR! Invalid Functional Currency Code in OFSA_TEMP_DB_INFO."

Refer to OFSA Database Problem Conditions and Solutions for information on
how to resolve this error.

If you have correctly specified a Functional Currency in the OFSA_TEMP_DB_
INFO table, the migrate displays the following prompt:

You have selected the following Functional Currency Code:
XXX
Do you want to proceed with this installation?(y/n):

Select Y to continue or N to terminate the procedure.

Migrate.sql exits SQL*Plus with an error message under the following
conditions:

■ You type N at a confirmation prompt

■ Any of the input parameters you entered are invalid.

■ You have insufficient disk space for the log files and script files that will be
produced

Note: If you already populated the OFSA_TEMP_IRC_45 table
with your Historical Rates ID conversion precedence, the Migrate
procedure continues without prompting for confirmation.

Running the Metadata Migration

12-16 Oracle Financial Services Installation and Configuration Guide

6. When migrate.sql has finished, exit SQL*Plus and review the migrate log files
in the <Upgrade home dir>/log directory for any errors that might have
occurred during the migrate.

Review Migrate Logs
Migrate.sql creates Procedure logs for messages and errors occurring during the
Migrate procedure as well as Conversion logs indicating how your objects and
users were migrated into the new FDM 4.5 Metadata.

Procedure Logs
Migrate.sql creates the following log files for messages occurring during the
procedure. Review these files for any significant errors.

Note: Be aware that the migrate.sql automatically re-runs the
migrate_check procedure. Any errors that occur are then outputted
to the migrate_check.log. The migrate_check.log file is overwritten
every time you run migrate.sql. Rename the migrate_check.log file
if you want to compare it against files you generate in the future.

Caution: The Metadata Migration process alters the password for
all users, including the Schema Owner, to OFSA. Individual users
cannot log in to any of the OFS applications at this stage of the
process. Once the entire upgrade process is complete (which
includes running the Upgrade Procedure), all users must alter their
individual passwords so that security is not compromised. Oracle
recommends that you change the FDM Schema Owner password at
this time to ensure a secure environment.

Note: Review the Procedure logs (migrate1, migrate2, migrate3,
and migrate4 log files) first. These log files provide information
about the migration process. Any errors that may occur during the
process are captured in these files. If you encounter any errors in
these log files, contact Oracle Support Services for assistance.

Running the Metadata Migration

FDM Database Upgrade Process 12-17

■ migrate1.log

■ migrate2.log

■ migrate3.log

■ migrate4.log

■ SQL*Loader log files - log files generated by SQL*Loader. There is one log file
for each execution of SQL*Loader. In UNIX, you use the grep command to
display key lines of these files to search for errors.

An example of a grep command follows:

cat ‘ls -1t *log‘|egrep "(Table|success|errors|Run|null)"

The -1t parameter after the ls command is (dash)(number 1)(letter t). Also, the
single-quote mark in the statement is the quote mark below the tilda (~) key on
the standard keyboard.

Metadata Conversion Logs
The Metadata Conversion logs provide information about how users and objects
were migrated into the new 4.5 Metadata structure. Review these log files to verify
that your objects and users were migrated correctly.

■ rename_objects.log - a list of objects renamed for the 4.5 release. This list
includes only internal application tables. The list is provided to inform those
users who query against such tables. Refer to Chapter 11, "Upgrading from
OFSA 3.5/4.0" for more information on how tables and views are affected by
the 4.5 Upgrade Process.

■ convert_users.log - a list of Users that exist in the database but are not
registered within the FDM metadata. Refer to Chapter 12, "FDM Database
Upgrade Process" for more information about how users are affected by the 4.5
Upgrade Process.

■ convert_system_info.log - a list of tables that exist in the database but are not
registered within the FDM metadata. Refer to Chapter 11, "Upgrading from
OFSA 3.5/4.0" for more information about how tables and views are affected by
the 4.5 Upgrade Process.

■ convert_sys_code_val.log - a list of new tables created to store user-defined
Codes and Code descriptions. Before the 4.5 release, this data was stored in
SYSTEM_CODE_VALUES. Refer to Chapter 12, "FDM Database Upgrade
Process" for more information on how codes and code descriptions are affected
by the 4.5 Upgrade Process.

Running the Upgrade Procedure

12-18 Oracle Financial Services Installation and Configuration Guide

Running the Upgrade Procedure
When you are ready to run the upgrade procedure be sure to do so from a console
at the server’s location rather than a remote site.

The Upgrade Procedure includes the following steps:

1. Database Preparation

2. Running the check.sql

3. Executing the Upgrade Procedure

4. Reviewing the Upgrade Logs

Database Preparation
Follow these steps to prepare the database.

1. Unset the ORACLE_PATH and SQL_PATH environment variables so that
custom SQL scripts are not executed in place of the upgrade SQL scripts. The
command line entries are:

unset ORACLE_PATH
unset SQL_PATH

2. Verify that your $ORACLE_SID points to the correct ORACLE instance on the
server.

Caution: The Migration procedure registers only FDM 4.5
Metadata for those objects that are identified in the OFSA 3.5/4.0
SYSTEM_INFO table and that exist as valid tables or views in the
Oracle RDBMS. The 4.5 Migration procedure does not convert
metadata for synonyms or views in the OFSA 3.5/4.0 database that
point to objects of a different name.

Caution: Unsetting these environment variables is essential. If you
do not, you will create problems during the upgrade procedure.

Running the Upgrade Procedure

FDM Database Upgrade Process 12-19

3. Remove any tables in the current schema that have the prefix O_ (the letter O
followed by an underscore).

The O_ prefix is reserved for the OFSA database upgrade procedure. If you do
not remove these tables from your system, you receive a problem warning
message in the check.log file. Make sure that the following minimum space is
available before you begin:

4. The upgrade process requires a sort_area_size of at least 20 MB.

If your sort_area_size is more than 20 MB, do not decrease it. If you need to
increase your sort_area_size for the upgrade process, record the current value of
the sort_area_size parameter (found in the init<dbname>.ora file) and then
increase it to at least 20 MB.

At the end of the procedure this parameter can be restored to its original size.

5. Shut down the Oracle listener.

6. Shut down and restart the database.

This guarantees that no one but the System Administrator is accessing the
database during the upgrade procedure and ensures that any new initialization
parameters take effect.

Running check.sql
The upgrade check is a process that enables you to identify and correct errors in
your database before you execute the upgrade procedure. The pre-upgrade check

SYSTEM tablespace 10 MB (minimum) assuming initjvm.sql already
run

DATA_TS tablespace 100 MB (minimum)

INDEX_TS tablespace 50 MB (minimum)

UNIX file system 10 MB for log files and temporary files

Note: These freeespace requirements pertain to completing the
generate_upgrade step only. The FDM Database Upgrade Process
then reports the freespace requirements to complete the procedure
in the header of the update.sql script file.

Running the Upgrade Procedure

12-20 Oracle Financial Services Installation and Configuration Guide

produces a text file listing all database problems that can cause the upgrade
procedure to fail. Running this process does not alter the OFSA database.

Follow these steps to run check.sql. In this section the
OFSA_INSTALL/dbs/<OFSA release> directory is referred to as the database
upgrade home directory, or <Upgrade home dir>.

1. In UNIX, change the directory to the <Upgrade home dir> directory.

2. Log into SQL*Plus as SYS using the following command line entry:

sqlplus SYS/<password>

3. Connect as the database owner using the following command line entry:

SQL> connect <owner_name>/<password>

Execute the upgrade check process using the following command line entry:

SQL> @check <Upgrade home dir>

<Upgrade home dir> is the full path to the database upgrade home directory.
Do not enter a trailing / character.

An example of a full path follows:

/app/ofsa/ofsa4.0-092/dbs/450001010

4. Review the check.log script file, created in the <Upgrade home dir>/log
directory, for any problem conditions.

If error conditions appear in the check.log script file, refer to "OFSA Database
Problem Conditions and Solutions" to resolve them. If there are problems you
cannot correct, contact Oracle Support Services. The support staff can review
the error messages with you to help resolve your problem.

You can ignore the following error messages when they appear:

ORA-00001: Unique constraint violated
ORA-00942: Table or view does not exist
ORA-00955: Name is already used by an existing object
ORA-02289: Sequence does not exist
Error during - ALTER TABLE OFSA_INSTALL_GROUPS ADD CONSTRAINT
Error during - DROP TABLE or DROP SEQUENCE

5. After making any necessary adjustments rerun check.sql to verify that all
problems have been addressed and corrected.

Running the Upgrade Procedure

FDM Database Upgrade Process 12-21

You can begin the upgrade procedure when no problems appear in the check.log
file.

Executing the Upgrade Procedure
Follow these steps to execute the upgrade procedure. In this section the
OFSA_INSTALL/dbs/<OFSA release> directory is referred to as the database
upgrade home directory, or <Upgrade home dir>.

1. In UNIX, change directory to the <Upgrade home dir> directory.

2. Log into SQL*Plus as SYS using the following command line entry:

sqlplus SYS/<password>

3. Log into SQL*Plus as the database owner using the following command line
entry:

SQL> connect <owner_name>/<password>

4. Execute the generate_upgrade step of the upgrade procedure. generate_
upgrade.sql takes the following input parameters:

<Password> This is the password for the database owner, to invoke
SQL*Loader.

<Upgrade home dir> This is the full path to the database upgrade home
directory as previously described. Do not enter a trailing / character.

An example of a full path follows:

/app/ofsa/ofsa4.0-092/dbs/400001010

<Sql*Loader executable> This is the command used to execute SQL*Loader. For
most Oracle installations, this command is sqlldr.

If you run generate_upgrade.sql with no command line parameters, it prompts
you for them. It then prompts you to confirm that the parameters you entered
are correct.

Note: Be aware that the check.log file is overwritten every time
you run check.sql. Rename the check.log file if you want to
compare it against files you generate in the future.

Running the Upgrade Procedure

12-22 Oracle Financial Services Installation and Configuration Guide

SQL> @generate_upgrade

Or:

SQL> @generate_upgrade <Password> <Upgrade home dir> <Sql*Loader
executable>

Generate_upgrade.sql exits SQL*Plus with an error message under the
following conditions:

■ You type N at the confirmation prompt

■ Any of the input parameters you entered are invalid

■ You have insufficient disk space for the log files and script files that will be
produced

5. After generate_upgrade.sql finishes, exit SQL*Plus and review the log files and
the update.sql script file. You can use the sample grep command provided in
Reviewing the Upgrade Logs to complete the review of the log files.

The generate_upgrade process produces the following log files located in the
<upgrade home dir>/log directory.

■ generate_upgrade.log

Review the generate_upgrade.log files in detail. Ignore error messages resulting
from the following processes:

■ Attempting to drop or alter an object that does not exist

■ Attempting to create an object that exists already

■ Attempting to insert data that exists already (unique constraint violations)

In generate_upgrade.log check to make sure that none of the package creations
or procedure executions generated any error messages. If you find significant
errors, contact Oracle Support Services before continuing with the upgrade
procedure.

update.sql is created by the generate_upgrade script and is used by the
upgrade script. This script performs the structural changes required by this
upgrade. If you ran the upgrade check process and corrected all problems

Note: The generate_upgrade step of the FDM Database Upgrade
Process may require significant time (several hours or more) in
order to complete depending upon your database environment and
the number of objects in your database instance.

Running the Upgrade Procedure

FDM Database Upgrade Process 12-23

reported, an upgrade script is created. The generate_upgrade script creates the
update.sql script in the <upgrade home dir> directory.

It is important that you review the database space report in the update.sql file to
verify that your tablespaces have the required free space before you proceed.
The amount of free space reported is an estimate, however, and in some cases
may vary significantly from the amount required.

This report is intended to alert you to potential space problems before you
proceed with the upgrade.

By default, update.sql assumes that you have a data tablespace named
DATA_TS and an index tablespace named INDEX_TS. If you do not want new
tables and indexes to be created in these tablespaces, you need to edit the
upgrade script after it has been created.

Review the storage clauses for each of the tables and indexes created in this
script and modify them as appropriate for your implementation.

Note: It is important that you review the database space report in
the update.sql file to verify that your tablespaces have the required
free space before you proceed. The amount of free space reported is
an estimate, however, and in some cases may vary significantly
from the amount required.

Caution: The update.sql adds a new column, ISO_CURRENCY_
CD, to Instrument tables in order to enable multi-currency
functionality. This column is required by the OFS applications and
is defined as NOT NULL. Because it is defined as NOT NULL, the
upgrade process updates this column on all instrument tables with
a default currency as defined in OFSA_TEMP_DB_INFO. Depending
upon the number of records present in each instrument table, this
update may require a significant amount of time for completion.

Running the Upgrade Procedure

12-24 Oracle Financial Services Installation and Configuration Guide

6. Log into SQL*Plus as the database owner.

sqlplus <owner_name>/<password>

7. Execute the upgrade step of the upgrade procedure.

Upgrade.sql takes the same parameters as generate_upgrade.sql, and you can
either pass them in using the command line, or allow the script to prompt for
them. Upgrade.sql calls update.sql and then rebuilds FDM metadata and
reloads FDM seeded data.

SQL> @upgrade <Password> <Upgrade home dir> <Sql*Loader executable>

8. When upgrade.sql has finished, exit SQL*Plus and review the upgrade log files
in the <Upgrade home dir>/log directory for any errors that might have
occurred during the upgrade. Refer to Reviewing the Upgrade Logs for detailed
instructions on how to review and resolve errors generated by the upgrade
process.

9. Log on to SQL*Plus as the database owner.

sqlplus <owner_name>/<password>

Note: Because the upgrade log files generated in the next step are
spooled by SQL*Plus, the full text of the SQL*Loader executions
called from upgrade.sql do not appear in the log file. If a
SQL*Loader step fails, you cannot detect it in the upgrade log files.
Use the following UNIX script command to capture all output from
the run of upgrade.sql, including the SQL*Loader executions:

script -a my_upgrade.log
sqlplus <owner_name>/<password>
SQL>@upgrade <Password> <Upgrade home dir> <Sql*Loader
executable>
SQL> exit
Exit

Caution: Do NOT execute the update.sql script by itself. Instead,
run the upgrade.sql script to complete the procedure.

Running the Upgrade Procedure

FDM Database Upgrade Process 12-25

10. Execute grant_all:

SQL> set serveroutput on
SQL> execute ofsa_dba.grant_all('OFSA',’COMMAND_LINE’);

If you encounter any errors in running this procedure, refer to Chapter 16,
"FDM Object Management".

11. Restore the sort_area_size parameter (in init<dbname>.ora) to its original value
if you have changed it.

12. Shut down and restart the database.

13. Restart the Oracle listener.

Reviewing the Upgrade Logs
The final step of the FDM database upgrade process creates several log files
requiring review. These files are categorized as follows:

Note: Once the Upgrade Procedure is completed, you still need to
install and configure the Oracle Discoverer Business Areas and
Workbooks. Refer to Chapter 13, "Installing and Configuring
Discoverer" for information on this procedure.

Caution: All passwords for FDM-seeded Internal roles are set to
XXADCFGZ. Oracle recommends that you change these role
passwords immediately after completing the FDM upgrade
procedure. To do so, use the Change Password functionality within
the FDM Administration application.

Caution: OFS application multiprocessing settings in FDM 4.5 are
no longer specified in the server ini files. Instead, they are
designated in the database. Because of this, all OFS application
multiprocessing settings revert to the default after the FDM
upgrade process is complete. Refer to the Chapter 19, "OFSA
Multiprocessing" for more information.

Running the Upgrade Procedure

12-26 Oracle Financial Services Installation and Configuration Guide

■ Primary Log Files

■ Row Count Log File

■ ID Conversion Log Files

■ SQL Loader Log Files

■ Internal Log Files (safe to ignore)

Primary Log Files
The Primary Log Files record all of the DDL statements executed by the upgrade, as
well as migration logic not related to ID Conversions. The 2 log files recording this
information are:

■ <xxxxxxxxx>.log

■ <xxxxxxxxx>_part_two.log

where xxxxxxxxx is the FDM database release. For example: 450000037.log and
450000037_part_two.log.

It is important to review all of these log files when the upgrade step is complete.
Errors and messages in these log files are categorized as follows:

■ Acceptable Errors - these errors can be ignored with no consequences.

■ Constraint Errors - these errors can, in most cases, be resolved after the upgrade
process is complete.

■ Fatal Errors - these errors require running the upgrade process again from the
beginning.

■ Table Classification Validation Messages - these messages indicate objects that
failed Table Classification requirements.

Acceptable Errors
In reviewing these files, you can ignore the following types of errors:

■ Errors resulting from dropping an object that does not exist (including
ALTER statements for dropping constraints)

■ Errors resulting from attempting to create an object that already exists

■ Errors resulting from attempting to add a constraint that already exists on a
table

Running the Upgrade Procedure

FDM Database Upgrade Process 12-27

■ Compilation errors for the ITG_RESOLVE_RANGE function. This function
is used for integration with the Oracle General Ledger product and is
therefore only operational when linked to an Oracle General Ledger
database.

■ Oracle error 4054 - database link OTBFS does not exist during the adding of
the package body for the OFSA_OMM_TO_VFS package. This package is
used for the integration with the Oracle Telebusiness product, and is
therefore only operational when linked to an Oracle Telebusiness database.

Constraint Errors
FDM 4.5 implements both primary key and foreign key constraints. Because the
OFSA 3.5/4.0 database did not implement such constraints, it is possible that bad
data from these previous versions may cause errors in enabling constraints in FDM
4.5.

The FDM upgrade process creates a table named OFSA_MSI_EXCEPTIONS and
records any rows violating database constraints. This table identifies the table and
constraint that is violated, as well as the row_id of the record causing the violation.
After the upgrade process is complete, review this table for any possible violations.
If any violations do exist, follow these guidelines to resolve them:

1. Identify constraint violations in OFSA_MSI_EXCEPTIONS

2. Update the records in the designated table name appropriately using the
specified row_id values. Refer to the Oracle catalogs (such as USER_CONS_
COLUMNS and USER_CONSTRAINTS) to identify the constraint definition.

3. Use the Alter-Table-enable-constraint syntax to activate the constraints.

Refer to the appropriate Oracle RDBMS documentation regarding the appropriate
SQL syntax for enabling constraints as well as general information about Oracle
constraints

If you encounter constraint errors that you are unable to resolve, contact Oracle
Support Services for assistance.

Fatal Errors
If you encounter any significant errors in any of the log files (or if you are not sure if
a particular error is fatal or not), contact Oracle Support Services. The support staff
can review the messages with you and assist in making the necessary corrections.

Running the Upgrade Procedure

12-28 Oracle Financial Services Installation and Configuration Guide

Table Classification Validation Messages
FDM 4.5 classifies objects (tables and views) for use with OFS applications. Each
Table Classification identifies a specific purpose for which an assigned table or view is
allowed to be used. Each of these Table Classifications has requirements that must be met in
order for a table or view to receive that classification.

Because the Table Classification concept is a new one for 4.5, the FDM database
upgrade procedure maps tables and views from OFSA 3.5/4.0 to the appropriate
Table Classifications in 4.5. However, some objects mapped by this procedure may
fail the validation requirements for one or more Table Classifications. The
classification failure messages are logged in the <xxxxxxxxx>_part_two.log file.

Review the Table Classifications validation messages in this file. For any Table
Classification failures, if you are not using the specified object for that purpose, you
do not need to resolve the indicated problem. Only when you intend to use the
object for a particular Table Classification for which it failed do you need to do
anything.

If you do intend on using an object for a Table Classification for which it failed, you
need to modify the object so that it meets the Table Classification requirements.
Once the object is modified, use the FDM Administration application to re-register
the object and then manually assign the Table Classification to the object.

Refer to Chapter 16, "FDM Object Management" details on the specific Table
Classification requirements.

Row Count Log File
The upgrade1.log file contains a report comparing record counts for FDM 4.5 tables
to record counts in the previous version. With some exceptions, when a table is
recreated to alter its definition to the new FDM 4.5 structure, the upgrade process

Note: All of the Table Classification validations for Instrument
tables fail if you have altered column definitions or attributes for
columns reserved for FDM. FDM allows you to change only the
data length, precision, and scale. If you have changed one of these
attributes for a column, you need to update the OFSA_COLUMN_
REQUIREMENTS table to match your altered definition. If you
have altered any other attributes of a column, you must modify the
column to match the requirements specified in OFSA_COLUMN_
REQUIREMENTS. Refer to Chapter 16, "FDM Object Management"
for details on how to resolve such occurrences.

Running the Upgrade Procedure

FDM Database Upgrade Process 12-29

records the record count for both the original table and the new table. Review this
log to verify that the 4.5 upgrade process preserves data from your OFSA 3.5/4.0
database.

The exceptions for which the upgrade process does not preserve data are as follows:

■ All _DAT tables

■ OFSA_PROCESS_CASH_FLOWS

■ OFSA_STP

The data in the _DAT tables is always reloaded during processing and is not
accessed directly by any OFS operations. The data in the OFSA_PROCESS_CASH_
FLOWS and OFSA_STP tables is for audit purposes only. The OFSA 3.5/4.0 data for
these tables is not valid for FDM 4.5.

Disparity in row counts in OFSA ID tables is caused by the ID Conversion routines.
Refer to the log files for these conversions to verify that all of your OFSA IDs were
migrated into the FDM 4.5 database structure as expected. Disparity in rows counts
is also caused by changes in the seeded data. The seeded data for the following
tables is comprised of fewer rows than in previous releases:

■ OFSA_INDEX_STORAGE_DEFAULTS

■ OFSA_TABLE_STORAGE_DEFAULTS

SQL Loader Logs
Review the log files generated by SQL*Loader. There should be one log file for each
execution of SQL*Loader. In UNIX, you can use the grep command to display key
lines of these files to search for errors.

An example of a grep command follows:

cat ‘ls -1t *log‘|egrep "(Table|success|errors|Run|null)"

If you followed the procedures in the previous step, then review the script log file
thoroughly to verify that every step in the upgrade was successful. The -1t
parameter after the ls command is (dash)(number 1)(letter t). The single-quote mark
in the statement is the quote mark below the tilda (~) key on the standard keyboard.

ID Conversion Logs
The ID Conversion logs provide information regarding the conversion of OFSA IDs
to the new 4.5 FDM database structure. Review the following ID Conversion logs to
identify any IDs that encountered problems:

Password Encryption Changes

12-30 Oracle Financial Services Installation and Configuration Guide

■ alloc_id_conv.log

■ fcast_rate_id_conv.log

■ leaf_charc_conv.log

■ rate_manager_conv.log

■ trans_strategy_conv.log

Internal Log Files (safe to ignore)
Ignore the contents of the msi_time_xxxxxx.log file as it is an internal log file. You
do not need to review this file.

Password Encryption Changes
Security and password encryption is significantly different in version 4.5 than it was
in previous OFSA versions. Previously, all user passwords were encrypted so that
the user was not aware of the true Oracle RDBMS password. Users were allowed to
access the database only through one of the OFS applications (such as Risk Manager
or Performance Analyzer). A second account with separate, more restrictive
privileges would then be created for the user to allow for reporting and other query
operations using other Oracle compatible tools (such as Oracle Discoverer or
SQL*Plus). This mechanism ensured that privileges that users required during
application operations were not available to them in other less controlled database
sessions.

The security implementation for FDM version 4.5 is significantly different from this.
Because FDM supports the concept of password protected Internal roles (roles
enabled only within one of the OFS applications) and External roles (roles available
for any database session), it is no longer necessary to encrypt user passwords. The
Metadata Migration of the 4.5 Database Upgrade Process resets all user passwords,
including that of the OFSA Schema Owner, to OFSA. Once the upgrade process is

Note: The Forecast Rate ID conversion log file (fcast_rate_id_
conv.log) may indicate that rates exist in RATES_FORECAST for
scenario_nums that do not exist in RATES_SCENARIO. This
situation occurs because OFSA 3.5/4.0 did not properly delete data
from RATES_FORECAST when a user deleted a Forecast Rates ID.
Messages relating to this situation in the fcast_rate_id.log file can be
ignored.

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-31

complete, it is imperative for all users to alter their individual passwords so that
security is not compromised.

Passwords for Internal roles seeded in the FDM database are set to XXADCFGZ by
the 4.5 database upgrade process. The passwords for these roles should also be
altered after the upgrade is complete so that database security is not compromised.

OFSA Database Problem Conditions and Solutions
While upgrading your database, you may encounter problems that halt the
procedure. Such problems are identified during the process by both the Metadata
Migration check and the Database Upgrade Check. The information provided in
this section describes how to resolve each of these problems so that you may
proceed with the upgrade.

The problem conditions listed here are described in detail in the following sections:

ID Errors
■ Client ids in seeded ID range

■ Leaf Characteristics ID or Transaction Strategy ID has incorrect number of rows

■ TP Process <sys_id_num> is Transfer Pricing ID that has been deleted.

General Errors
■ Client data in the ofsa_correction_proc_msg_cd data range

■ Existing Role conflicts with a seeded Role

■ Functional Currency not defined or invalid in OFSA_TEMP_DB_INFO

■ INIT.ora parameters not correct

■ Invalid data in OFSA_TEMP_IRC_45

■ o_ tables have been found

Leaf Errors
■ Client data in the detail_elem (or ofsa_detail_elem) seeded data range

■ Client data in the leaf_desc (or ofsa_leaf_desc) seeded data range

■ Column_name is null in OFSA_DETAIL_ELEM

■ Duplicate column_name values in ofsa_detail_elem

OFSA Database Problem Conditions and Solutions

12-32 Oracle Financial Services Installation and Configuration Guide

User and User Group Errors
■ Identical User or User Group names

■ User running the upgrade must be the FDM Schema Owner

■ User conflicts with seeded Recipient Name or ID Folder

■ User conflicts with User Group to be created

■ User conflicts with Security Profile to be created

■ User or Group in CATALOG_OF_USERS not uppercase

■ User <username> in HARV_USER not uppercase

■ <group_name> not a valid User Group

SYSTEM_CODE_VALUES Errors
■ Alpha values found in numeric columns

■ Column_name in SYSTEM_CODE_VALUES not uppercase

■ Instrument values in SYSTEM_CODE_VALUES not uppercase

■ Duplicate values in SYSTEM_CODE_VALUES

■ NULL values in SYSTEM_CODE_VALUES

SYSTEM_INFO Errors
■ Duplicate DISPLAY_NAME values in SYSTEM_INFO

■ Null values found in SYSTEM_INFO columns

■ Tables in SYSTEM_INFO have the same display_name

■ Table or Column Name in SYSTEM_INFO not uppercase

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-33

ID Errors

Client IDs in seeded ID range
The following error message appears:

“Update cannot proceed, client id's have been found in seeded ID range”

Problem:
The database upgrade procedure has found rows in the CATALOG_OF_IDS table
where SYS_ID_NUM is between 80,000 and 100,000 and GROUP_NAME is not
<TSER> or <OFSA>. This range of SYS_ID_NUM values is reserved for data seeded
by the database upgrade process.

SELECT sys_id_num, id_desc_short, id_type, group_name
FROM catalog_of_ids
WHERE sys_id_num >= 80000
AND sys_id_num <= 100000
AND group_name <> ’TSER’
AND group_name <> '<OFSA>';

Solution:
Log in to the appropriate OFSA product and delete the IDs identified by the
SYS_ID_NUM values returned by the SELECT statement. To save an ID with
appropriate SYS_ID_NUM values, open the ID and perform SAVE AS prior to
deleting it. Rerun the SELECT statement. If any offending rows still remain, delete
them from CATALOG_OF_IDS so that the database upgrade can continue.

OFSA Database Problem Conditions and Solutions

12-34 Oracle Financial Services Installation and Configuration Guide

Leaf Characteristics ID or Transaction Strategy ID has incorrect number of rows
One or more of the following error messages appears:

"ERROR! Transaction Strategy ID <sys_id_num> has incorrect number of rows
for one or more leaves and transactions."

ERROR! Leaf Characteristics ID <sys_id_num> has incorrect number of rows
for one or more leaves and transactions.

Problem
A Transaction Strategy ID or Leaf Characteristics ID is invalid.

Use the following SQL to identify invalid Leaf Characteristics IDs:

SELECT DISTINCT a.sys_id_num,
b.id_desc_short||’.’||b.group_name id_name
FROM idt_tm_details a, catalog_of_ids b
WHERE b.id_type = 309
AND b.sys_id_num = a.sys_id_num
GROUP BY a.sys_id_num,a.leaf_node,b.id_desc_short,b.group_name
HAVING COUNT(*) <> 42;

Use the following SQL to identify invalid Transaction Strategy IDs:

SELECT DISTINCT a.sys_id_num,
b.id_desc_short||’.’||b.group_name id_name
FROM idt_tm_details a, catalog_of_ids b
WHERE a.sys_id_num = b.sys_id_num
AND b.id_type=306
GROUP BY a.sys_id_num,a.leaf_node,a.leaf_num_id,b.id_desc_short,
b.group_name
HAVING COUNT(*) <> 50;

Solution
Remove the specific IDs using the 4.0 Risk Manager application.

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-35

TP Process <sys_id_num> is using invalid Transfer Pricing ID
One of the following error messages appears:

"ERROR! TP Process ID <sys_id_num> is using a Transfer Pricing ID that has
been deleted."

Problem
A TP Process ID exists that is referencing an invalid or non-existent Transfer Pricing
ID.

Use the following SQL to identify invalid TP Process IDs:

SELECT sys_id_num FROM idt_process
WHERE id_type=200 AND process_sys_id NOT IN
(SELECT sys_id_num FROM idt_transfer_price
WHERE sys_id_num IN
(SELECT sys_id_num FROM catalog_of_ids WHERE id_type=200));

Solution
If the sys_id_num identified by the SQL does not exist in CATALOG_OF_IDS, then
you must manually delete the records from IDT_PROCESS for that identified sys_
id_num.

If the identified sys_id_num does exist in CATALOG_OF_IDS, then it can be
removed from the database using the 4.0 Transfer Pricing application. You can
identify the appropriate ID to delete by running the following SQL:

SELECT id_desc_short, group_name
FROM CATALOG_OF_IDS
WHERE sys_id_num = <sys_id_num>;

OFSA Database Problem Conditions and Solutions

12-36 Oracle Financial Services Installation and Configuration Guide

General Errors

Client data in the ofsa_correction_proc_msg_cd data range
The following error message appears:

“Update cannot proceed, there may be client data in the seeded data range
of system_error_code.”

Problem:
The database upgrade process has found the incorrect number of rows in
OFSA_CORRECTION_PROC_MSG_CD where the ERROR_CODE>= 9,000 or
ERROR_CODE=0.

This range of system_error_code is reserved for data seeded by the database
upgrade process.

IF current_db_version >= 300.000002 AND
current_db_version <350.000000 THEN
SELECT (count(*)-84)
INTO system_count
FROM system_error_code
WHERE error_code >= 9000;

ELSIF current_db_version >= 350.000000 THEN
SELECT (count(*)-85)
INTO system_count
FROM system_error_code
WHERE error_code >= 9000;

OR error_code = 0
END IF;

IF (system_count <=0) THEN
There is no problem

ELSE
There is client data in the seeded range of the system_error_code
table. The offending rows must be deleted before proceeding with
the upgrade.

END IF;

Solution:
Archive the existing table, perform the upgrade and then compare the new table to
the old table to identify the offending rows. Delete or move all offending data in
this range. Contact Oracle Support Services before attempting to solve this problem.

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-37

Existing Role conflicts with a seeded Role
The following message appears:

Existing Role conflicts with a seeded Role.

Problem
The designated Role is a reserved Role for the FDM database. FDM reserves specific
Role names for application use.

Solution:
Drop the identified Role and re-create it with a different name.

OFSA Database Problem Conditions and Solutions

12-38 Oracle Financial Services Installation and Configuration Guide

Functional Currency not defined or invalid in OFSA_TEMP_DB_INFO
One of the following error messages appears:

"ERROR! Functional Currency Code not defined in OFSA_TEMP_DB_INFO."

"ERROR! Invalid Functional Currency Code in OFSA_TEMP_DB_INFO."

Problem
The upgrade process references the currency_cd value from the OFSA_TEMP_DB_
INFO table to populate the ISO_CURRENCY_CD field in the database with an
appropriate currency code. The OFSA_TEMP_DB_INFO table is created by the
Metadata Migration Check to allow the user to specify this default value for the
upgrade. Because the OFSA_TEMP_DB_INFO table is created by the Metadata
Migration Check, you always need to populate it with a valid currency code.

Solution
Insert a single record into the OFSA_TEMP_DB_INFO table. For example:

INSERT INTO ofsa_temp_db_info
values (’USD’);

In the case where there already is a record but you have received the Invalid
Functional Currency Code error, make sure that the value is a valid Currency Code.
A list of valid Currency Codes is available in Appendix A, "Functional Currencies".

Note: The FDM Database Upgrade Process requires that the
OFSA_TEMP_DB_INFO table have only one row.

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-39

INIT.ora parameters not correct
One of the following error messages appears:

"ERROR! INIT.ora compatible parameter must be 8.1.5."

"ERROR! INIT.ora max_enabled_roles parameter must be greater than or equal
to 60."

"ERROR! INIT.ora dml_locks parameter must be greater than or equal to 200."

Problem
The following parameters are required for the INIT.ora file for the instance:

compatible = 8.1.6

max_enabled_roles>=60

dml_locks >= 200

Solution
Correct the INIT.ora file for the instance. Then shutdown the instance and restart it.

OFSA Database Problem Conditions and Solutions

12-40 Oracle Financial Services Installation and Configuration Guide

Invalid data in OFSA_TEMP_IRC_45
One of the following error/warning messages appears:

"ERROR! Invalid Base Currency CD <currency_cd> in OFSA_TEMP_IRC_45"

"ERROR! Invalid rates_sys_id <sys_id_num> in OFSA_TEMP_IRC_45"

"OFSA_TEMP_IRC_45 table is empty. If you do not setup OFSA_TEMP_IRC_45 the
upgrade will convert IRC in the ascending order of the History Rate ID sys_
id_num."

Problem
The upgrade process uses the currency_cd value from the OFSA_TEMP_IRC_45
table to perform data Historical Rates data conversions. The OFSA_TEMP_IRC_45
table is created by the Metadata Migration Check to allow the user to specify the
values used for this conversion. In this case the data inserted into this table for the
data conversions is invalid.

Solution
The currency_cd column in OFSA_TEMP_IRC_45 is used to store the Base Currency
Code. A list of valid Currency Codes is available in Appendix A, "Functional
Currencies". For example, the ISO_CURRENCY_CD USD is for American dollars.

The rates_sys_id column in OFSA_TEMP_IRC_45 is the Historical Rates ID that is
converted during the upgrade to the new 4.5 structure. If you do not specify one or
more valid Historical Rates IDs in the rates_sys_id column of this table prior to
running the upgrade (that is, there are no rows in this table), the upgrade converts
all of the Historical Rates IDs in the database. For more information, see Historical
Rates Conversion.

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-41

o_ tables have been found
The following error message appears:

“Update cannot proceed, o_ tables have been found.”
“Please remove all o_ tables and re-run this step.”

Problem:
The database upgrade process has found tables owned by the database owner that
start with o_. This prefix is reserved for the FDM database upgrade procedure.

SELECT table_name
FROM user_tables
WHERE table_name like 'o_%' ESCAPE '\'
OR table_name like 'O_%' ESCAPE '\';

Solution:
All tables with this prefix condition need to either be renamed or dropped from the
OFSA database owner schema before the database upgrade can continue.

OFSA Database Problem Conditions and Solutions

12-42 Oracle Financial Services Installation and Configuration Guide

Leaf Errors

Client data in the detail_elem (or ofsa_detail_elem) seeded data range
One of the following error messages appears:

"Update cannot proceed, there may be client data in the seeded data range of
detail_elem."

Update cannot proceed, there may be client data in the seeded data range of
ofsa_detail_elem."

Problem:
The database upgrade procedure has found the incorrect number of rows in
DETAIL_ELEM or OFSA_DETAIL_ELEM table where the LEAF_NODE is less than
10,000. This range of LEAF_NODE values is reserved for data seeded by the
database upgrade process.

If you are running the Metadata Migration Check procedure, the problem is for the
DETAIL_ELEM table. If you are running the Database Upgrade Check, the problem
is for the OFSA_DETAIL_ELEM table.

The acceptable count of values for DETAIL_ELEM and OFSA_DETAIL_ELEM is
based upon the VERSION value in the OFSA_VERSION table where APP_
NAME=’Database’. For all SQL statements, substitute OFSA_DETAIL_ELEM for
DETAIL_ELEM if you are validating these counts after the Metadata Migration is
complete:

For VERSION <= 350.000124
SELECT (COUNT(*)-157) FROM detail_elem
WHERE leaf_node < 10000;

For VERSION <= 400.000020
SELECT (COUNT(*)-163) FROM detail_elem
WHERE leaf_node < 10000;

For VERSION < 400.101067
SELECT (COUNT(*)-145) FROM detail_elem
WHERE leaf_node < 10000;

For VERSION < 450.000000
SELECT (COUNT(*)-165) FROM detail_elem
WHERE leaf_node < 10000;

Otherwise
SELECT (COUNT(*)-181) FROM detail_elem
WHERE leaf_node < 10000;

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-43

Solution:
The offending rows in DETAIL_ELEM or OFSA_DETAIL_ELEM are user-defined,
financial element values incorrectly defined within the reserved range. Recreate
these financial element values in Leaf Setup with new leaf values outside of the
seeded data range (>10000) and update all data tables with the new values. Then
delete the inappropriate data in the reserved range.

Missing financial elements in the seeded data range are automatically re-populated
by the database upgrade process.

OFSA Database Problem Conditions and Solutions

12-44 Oracle Financial Services Installation and Configuration Guide

Client data in the leaf_desc (or ofsa_leaf_desc) seeded data range
The following error message appears:

Update cannot proceed, there may be client data in the seeded data range of
leaf_desc.

Update cannot proceed, there may be client data in the seeded data range of
ofsa_leaf_desc.

Problem:
The database upgrade process has found the incorrect number of rows in LEAF_
DESC or OFSA_LEAF_DESC where the LEAF_NUM_ID = 0 and the LEAF_NODE
is less than 10,000. This range of LEAF_NODE values is reserved for data seeded by
the database upgrade procedure

If you are running the Metadata Migration Check procedure, the problem is for the
LEAF_DESC table. If you are running the Database Upgrade Check, the problem is
for the OFSA_LEAF_DESC table.

The acceptable count of values for LEAF_DESC and OFSA_LEAF_DESC is based
upon the VERSION value in the OFSA_VERSION table where APP_
NAME=’Database’. For all SQL statements, substitute OFSA_LEAF_DESC for
LEAF_DESC if you are validating these counts after the Metadata Migration is
complete:

For VERSION <= 350.000124
SELECT (COUNT(*)-157) FROM leaf_desc
WHERE leaf_num_id = 0 AND leaf_node < 10000;

For VERSION <= 400.000020
SELECT (COUNT(*)-163) FROM leaf_desc
WHERE leaf_num_id = 0 AND leaf_node < 10000;

For VERSION < 400.101067
SELECT (COUNT(*)-145) FROM leaf_desc
WHERE leaf_num_id = 0 AND leaf_node < 10000;

For VERSION < 450.000000
SELECT (COUNT(*)-165) FROM leaf_desc
WHERE leaf_num_id = 0 AND leaf_node < 10000;

Otherwise
SELECT (COUNT(*)-181) FROM leaf_desc
WHERE leaf_num_id = 0 AND leaf_node < 10000;

Solution:
The rows in LEAF_DESC causing the problem are user-defined, financial element
values incorrectly defined within the reserved range. Recreate these financial

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-45

element values in Leaf Setup with new leaf values outside of the seeded data range
(>10000) and update all client data tables with the new values. Then delete the data
from the reserved range.

OFSA Database Problem Conditions and Solutions

12-46 Oracle Financial Services Installation and Configuration Guide

Column_name is null in ofsa_detail_elem
The following error message appears:

ERROR: Update cannot proceed,column_name is null in OFSA_DETAIL_ELEM.

Problem:
The column_name in OFSA_DETAIL_ELEM is the name of the output column for
any Transformation processing for the designated Financial Element. Each Financial
Element in OFSA_DETAIL_ELEM must have an output column_name value
assigned to it.

To identify the null column_name values in OFSA_DETAIL_ELEM, run the
following query in SQL*Plus:

SELECT leaf_node, column_name
FROM ofsa_detail_elem
WHERE column_name IS NULL;

Solution:
Update the column_name values in OFSA_DETAIL_ELEM so that each Financial
Element ID (leaf_node) has a unique column_name.

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-47

Duplicate column_name values in ofsa_detail_elem
The following error message appears:

ERROR: Update cannot proceed, duplicate column_name values in OFSA_DETAIL_
ELEM.

Problem:
The column_name in OFSA_DETAIL_ELEM is the name of the output column for
any Transformation processing for the designated Financial Element. Each Financial
Element in OFSA_DETAIL_ELEM must have a unique output column_name value
assigned to it.

To identify the duplicate column_name values in OFSA_DETAIL_ELEM, run the
following query in SQL*Plus:

SELECT column_name, count(*)
FROM ofsa_detail_elem
GROUP BY column_name HAVING COUNT(*) > 1;

Solution:
Update the column_name values in OFSA_DETAIL_ELEM so that each Financial
Element ID (leaf_node) has a unique column_name.

OFSA Database Problem Conditions and Solutions

12-48 Oracle Financial Services Installation and Configuration Guide

User Errors

Identical User or User Group names
One of the following error messages appears:

"ERROR! Identical User Group Names due to trailing spaces."

"ERROR! Identical User or User Group name <name>"

Problem
OFSA 4.0 allowed a User Name and a Group Name to be identical. The FDM 4.5
database does not allow this. In 4.5, both Users and User Groups are categorized as
Recipients, and must have distinct names.

Use the following SQL to identify 4.0 Users or Groups with duplicate names:

SELECT rtrim(login_name), count(*)
FROM catalog_of_users
GROUP BY rtrim(login_name)
HAVING count(*)>1

Solution
Rename or remove the duplicate Users and User Groups using the 4.0 System
Administration application.

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-49

User running the upgrade must be the FDM schema owner
The following error message appears:

"Update cannot proceed, The username used to login to SQL*Plus for running
the upgrade must be the same as the database owner recorded in the
database."

Problem
The username used to run the database upgrade procedure must be identified in the
OFSA database as the database owner. To identify the username designated as the
OFSA database owner, execute the following SQL statement:

SELECT login_name
FROM catalog_of_users
WHERE user_owner=1;

Solution
Only one record should exist in the CATALOG_OF_USERS table where the
USER_OWNER=1. In addition, the LOGIN_NAME designated in
CATALOG_OF_USERS where USER_OWNER=1 must be the schema name that
owns all of the OFSA tables and objects.

If there is no record in CATALOG_OF_USERS where USER_OWNER=1, contact
Oracle Support Services for information on how to create a correct entry. If there is a
record in CATALOG_OF_USERS where USER_OWNER=1 but the LOGIN_NAME
is different than the schema name that owns all of the OFSA tables and objects, then
you must update the LOGIN_NAME with the correct username prior to continuing
with the upgrade. However, if such a situation exists, it is possible that other
dependent OFSA data for the username must also be corrected. Before continuing
with the upgrade process, contact Oracle Support Services for assistance.

OFSA Database Problem Conditions and Solutions

12-50 Oracle Financial Services Installation and Configuration Guide

User conflicts with seeded Recipient Name or ID Folder
One of the following error messages appears:

"ERROR! Existing User <username> conflicts with a seeded Recipient Name."

"ERROR! User in ofsa_results_table_types conflicts with a seeded Recipient
Name"
"ERROR! User in ofsa_users_table_tracking conflicts with a seeded Recipient
Name"
ERROR! Existing User Group or User named ALL, OFSA or DELETED_USERS’.

Problem
The username is the same name as a Recipient Name reserved by FDM. All
reserved FDM Recipient Names are identified by an FDM_ prefix. ID Folders
reserved by FDM include ALL, OFSA, and DELETED_USERS.

Solution
FDM reserves certain names for the OFS applications. The specific 4.0 User Name or
Group must be deleted from the database using the OFSA 4.0 System
Administration application.

See Chapter 14, "FDM Security" for information about recipient names reserved by
FDM.

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-51

User conflicts with User Group to be created
The following error message appears:

"ERROR! Existing User <username> conflicts with User Group to be created
during migration."

Problem
The username is the same name as a User Group Name that is created by the
Metadata Migration process. The Metadata Migration process migrates a 4.0 Group
into the following entities:

Example: 4.0 Group name is RM_USERS

Because the Group concept in OFSA 4.0 embodied the functionality for User
Groups, Security Profiles and ID Folders, the Metadata Migration process creates
separate entities from a single Group. The problem identified by the Migrate check
is that there is a User or Group Name that is the same name as a User Group to be
created by the Migrate. In the example, there is a 4.0 Group named RM_USERS and
G_RM_USERS.

The following SQL identifies any conflicts that might exist for User Groups to be
created by the migrate:

SELECT username FROM all_users
 WHERE username IN
 (SELECT ’G_’ || DECODE(login_name,’<ALL>’,’ALL’,
 ’<OFSA>’,’OFSA’,
 login_name)
 FROM catalog_of_users
 WHERE type_cd = 2);

Solution
Rename or remove the Groups in 4.0 which cause this problem.

Entity Type Entity Name

User Group G_RM_USERS

Security Profile S_RM_USERS

ID Folder RM_USERS

OFSA Database Problem Conditions and Solutions

12-52 Oracle Financial Services Installation and Configuration Guide

User conflicts with Security Profile to be created
The following error message appears:

"ERROR! Existing User <username> conflicts with Security Profile to be
created during migration."

Problem
The username is the same name as a Security Profile Name that is created by the
Metadata Migration process. The Metadata Migration process migrates a 4.0 Group
into the following entities:

Example: 4.0 Group name is RM_USERS

Because the Group concept in OFSA 4.0 embodied the functionality for User
Groups, Security Profiles and ID Folders, the Metadata Migration process creates
separate entities from a single Group. The problem identified by the Migrate check
is that there is a User or Group Name that is the same name as a Security Profile to
be created by the Migrate. In the example, there is a 4.0 Group named RM_USERS
and S_RM_USERS.

The following SQL identifies any conflicts that might exist for User Groups to be
created by the migrate:

SELECT username FROM all_users
 WHERE username IN
 (SELECT ’S_’ || DECODE(login_name,’<ALL>’,’ALL’,
 ’<OFSA>’,’OFSA’,
 login_name)
 FROM catalog_of_users
 WHERE type_cd = 2);

Solution
Rename or remove the Groups in 4.0 that cause this problem.

Entity Type Entity Name

User Group G_RM_USERS

Security Profile S_RM_USERS

ID Folder RM_USERS

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-53

User or Group in CATALOG_OF_USERS not uppercase
One of the following error messages appears:

"ERROR! User <username> in CATALOG_OF_USERS not uppercase."

"ERROR! Group <group_name> in CATALOG_OF_USERS not uppercase."

Problem
A User or Group in the CATALOG_OF_USERS table is not in uppercase. The 4.5
FDM database requires that all User and Group Names be in all uppercase.

Use the following SQL to identify invalid Users or Groups

SELECT login_name, type_cd FROM catalog_of_users
WHERE login_name <> UPPER(login_name);

Solution
Update or remove the invalid Users or Groups. To remove, use the 4.0 System
Administration application. To update the Users or Groups to be correct, you need
to update the following table/column combinations:

CATALOG_OF_USERS.login_name

CATALOG_OF_GROUPS.group_name

CATALOG_OF_GROUPS.user_name

CATALOG_OF_IDS.group_name

When updating, set the value in the column equal to upper(column_name). In
situations where such an update statement creates a duplicate entry, you need to
remove the records causing the duplication.

OFSA Database Problem Conditions and Solutions

12-54 Oracle Financial Services Installation and Configuration Guide

User <username> in HARV_USER not uppercase
The following error message appears:

"ERROR! User <username> in HARV_USER not uppercase."

Problem
A User in the HARV_USER table is invalid. Users identified in the HARV_USER
table are only used for the 4.0 Campaign Navigator application.

Use the following SQL to identify invalid Users from HARV_USER:

SELECT user_name FROM harv_user
WHERE user_name <> UPPER(user_name);

Solution
Update the user_name field in the HARV_USER table to uppercase.

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-55

<group_name> not a valid User Group
The following error message appears:

"ERROR! <group_name> not a valid User Group."

Problem
IDs in CATALOG_OF_IDS are attached to a Group that does not exist. The Group is
not identified in the CATALOG_OF_USERS tables as a valid Group.

Use the following SQL to identify invalid Groups

SELECT DISTINCT group_name FROM catalog_of_ids
WHERE group_name not in
(SELECT login_name FROM catalog_of_users
WHERE type_cd = 2)
AND group_name <> ’<INDIVIDUAL>’;

Solution
Update the records in CATALOG_OF_IDS attached to the invalid Group. Set the
group_name field equal to a valid Group. Or, create a Group in 4.0 System
Administration to match the invalid Group name. The entries in CATALOG_OF_
IDS then become valid.

OFSA Database Problem Conditions and Solutions

12-56 Oracle Financial Services Installation and Configuration Guide

SYSTEM_CODE_VALUES Errors

Alpha values found in numeric columns
The following error message appears:

Update cannot proceed, non-numeric values have been found in system_code_
values for rows that contain data for numeric columns.

Problem:
The database upgrade procedure has found rows in system_code_values that
pertain to numeric columns, which have alphanumeric values.

Solution:
The SQL statement that follows retrieves all rows in system_code_values that have
alphanumeric values for numeric columns.

Select * FROM system_code_values cv
WHERE EXISTS (SELECT NULL FROM system_info si

WHERE si.data_code = 1
AND (si.table_name = cv.instrument
OR cv.instrument = ’ALL’)
AND si.column_name = cv.column_name
AND si.database_type = ’NUMBER’)

AND TRANSLATE (value, ’a 0123456789’,’a’) IS NOT NULL;

You may either delete these rows or modify their values so that they are
numeric.

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-57

Column_name in SYSTEM_CODE_VALUES not uppercase
The following error message appears:

"ERROR! Column_name in SYSTEM_CODE_VALUES not uppercase."

Problem
Records exist in the SYSTEM_CODE_VALUES table with values in the column_
name field that are not uppercase. The FDM 4.5 database requires that the column_
name values for all records be in uppercase.

The following SQL identifies the records with an invalid column_name value:

SELECT instrument,column_name,value
FROM system_code_values
WHERE upper(column_name)<>column_name;

Solution
Update the invalid records in SYSTEM_CODE_VALUES.

OFSA Database Problem Conditions and Solutions

12-58 Oracle Financial Services Installation and Configuration Guide

Instrument values in SYSTEM_CODE_VALUES not uppercase
The following error message appears:

"ERROR! Instrument column in SYSTEM_CODE_VALUES not uppercase."

Problem
Records exist in the SYSTEM_CODE_VALUES table with values in the instrument
column that are not uppercase. The FDM 4.5 database requires that the instrument
column for all records be in uppercase.

The following SQL identifies the records with an invalid instrument value:

SELECT instrument,column_name,value
FROM system_code_values
WHERE upper(instrument)<>instrument;

Solution
Update the invalid records in SYSTEM_CODE_VALUES.

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-59

Duplicate values in SYSTEM_CODE_VALUES
The following error message appears:

"ERROR! Duplicate values in SYSTEM_CODE_VALUES."

Problem
Duplicate records exist in SYSTEM_CODE_VALUES for the same table (instrument)
and column_name combination.

The following SQL identifies the duplicate records:

SELECT UPPER(instrument) instrument,UPPER(column_name) column_name,
TRIM(BOTH FROM value) value
FROM system_code_values
GROUP BY UPPER(instrument),UPPER(column_name),TRIM(BOTH FROM value)
HAVING COUNT(*) > 1

Solution
Delete the duplicates from the SYSTEM_CODE_VALUES table.

OFSA Database Problem Conditions and Solutions

12-60 Oracle Financial Services Installation and Configuration Guide

NULL values in SYSTEM_CODE_VALUES
The following error message appears:

"ERROR! Null values in SYSTEM_CODE_VALUES.column_description"

Problem
Null values exist in the column_description field of the SYSTEM_CODE_VALUE
table.

The following SQL identifies the records with a null value for column_description:

SELECT instrument,column_name,value
FROM system_code_values
WHERE column_description IS NULL;

Solution
Update the invalid records in SYSTEM_CODE_VALUES.

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-61

SYSTEM_INFO Errors

Duplicate DISPLAY_NAME values in SYSTEM_INFO
One of the following message appears:

Update cannot proceed, Tables have been found in system_info whose columns
have the same display_name.

ERROR! <table_name> has columns with duplicate display_name values

Problem
Multiple columns of a single table have the same DISPLAY_NAME. The DISPLAY_
NAME of columns must be unique within each table.

The following query identifies the rows in SYSTEM_INFO with duplicate
DISPLAY_NAME values within a table:

SELECT data_code, table_name, column_name, display_name from system_info
WHERE (table_name, display_name)
IN (SELECT table_name, display_name
 FROM system_info
 WHERE data_code = 1
 AND display_name IS NOT NULL
 GROUP BY table_name, display_name
 HAVING count(*) > 1)
ORDER BY table_name, display_name, column_name;

Solution:
Modify the DISPLAY_NAME as appropriate to ensure uniqueness within each
table.

OFSA Database Problem Conditions and Solutions

12-62 Oracle Financial Services Installation and Configuration Guide

Null values found in SYSTEM_INFO columns
The following error message appears:

.Update cannot proceed, NULL values have been found in one or more of the
following columns in system_info - display_flag, display_name, and column_
data_type.

Problem:
The database upgrade process has found rows in SYSTEM_INFO where either the
DISPLAY_FLAG, DISPLAY_NAME or COLUMN_DATA_TYPE are null. Data is
required in these columns for OFSA to function properly.

The following query identifies the rows in SYSTEM_INFO with null values for these
columns:

SELECT data_code, table_name, column_name, display_flag, display_name,
column_data_type
 FROM system_info
 WHERE display_name IS NULL
 OR display_flag IS NULL
 OR column_data_type IS NULL;

Solution
You must provide values for these columns before proceeding with the database
upgrade process.

The DISPLAY_FLAG column designates whether or not the specific column is
displayed in OFSA. Y designates that OFSA displays the column, while N
designates that the column is not displayed.

The DISPLAY_NAME column specifies the name of the column as it appears to the
user within OFSA.

The COLUMN_DATA_TYPE designates how the column is used within OFSA (for
example, Balance or Rate, and so on).

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-63

Use the following matrix to determine the appropriate column_data_type for a
column:

Column Data
Type Data Type Definition

BALANCE NUMBER(14,2) Used for columns that hold money values
such as a bank account balance

CODE NUMBER(5) .Code column with description stored in
SYSTEM_CODE_VALUES

CODE_NUM NUMBER(10) .Code column with no description in SYSTEM_
CODE_VALUES.

DESCRIPTION VARCHAR2(255) A description column.

FLAG NUMBER(1) Boolean On/Off flag column (represented by a 1
or a 0).

FREQ NUMBER(5) Identifies event frequency (for example, Payment
Frequency).

ID NUMBER(14) Identifies a leaf column.

IDENTITY NUMBER(10) Identifies the source of data.

ID_NUMBER NUMBER(25) Used to uniquely identify account records (for
instrument/service data).

MULT CHAR(1) A Multiplier column identifying the unit of
measurement for a Term or Frequency.
Acceptable values include D for Day, M for
Month, and Y for Year.

RATE NUMBER(8,4) A percentage value of a monetary balance such as
Interest Rate or Rate of Return.

SWITCH NUMBER(5) A boolean On/Off flag column (represented by a
1 or a 0).

SYS_ID_NUM NUMBER(10) Each value is unique within the entire database.
Only used for ID identifier columns reserved for
OFSA internal use.

TERM NUMBER(5) Duration (used together with MULT)

VARCHAR2 VARCHAR2 Used for any character column that does not fit a
described category.

OFSA Database Problem Conditions and Solutions

12-64 Oracle Financial Services Installation and Configuration Guide

NUMBER NUMBER Used for any numeric column that does not fit a
described category.

Column Data
Type Data Type Definition

OFSA Database Problem Conditions and Solutions

FDM Database Upgrade Process 12-65

Tables in SYSTEM_INFO have the same display_name
The following error message appears:

"ERROR! Tables in SYSTEM_INFO have the same display_name."

Problem
Each table record in SYSTEM_INFO must have a unique display_name. Table
records are designated by data_code>1.

Use the following SQL to identify tables with identical display_name values:

SELECT count(*), display_name FROM system_info
WHERE data_code > 1 AND data_code != 4
AND display_flag = ’Y’
GROUP BY display_name
HAVING count(*) > 1;

Solution
Update the display_name field in SYSTEM_INFO so that all of the tables (data_
code>1) have unique display_name values. No display_name values should be null.

OFSA Database Problem Conditions and Solutions

12-66 Oracle Financial Services Installation and Configuration Guide

Table, Column Name or Related_Field in SYSTEM_INFO not uppercase
One of the following error messages appears:

"ERROR! table_name in SYSTEM_INFO not uppercase."
"ERROR! column_name in SYSTEM_INFO not uppercase.
"ERROR! related_field in SYSTEM_INFO not uppercase."

Problem
The metadata in the SYSTEM_INFO table is invalid. All Table Names and Column
Names in SYSTEM_INFO must be uppercase values.

Use the following SQL to identify invalid entries in SYSTEM_INFO

SELECT table_name,instrument, column_name, data_code, related_field
FROM system_info
WHERE upper(table_name) <> table_name
OR upper(column_name) <> column_name
OR upper(related_field) <> related_field
ORDER BY table_name, column_name

Solution
Update the SYSTEM_INFO table to set the values for table_name, column_name
and related_field to be uppercase for the invalid records. The related_field column,
legal values are either a valid column_name from the same table_name, or N/A.

Installing and Configuring Discoverer 13-1

13
Installing and Configuring Discoverer

This chapter provides information on installing and configuring Oracle Discoverer
for use with the Oracle Financial Data Manager (FDM). Complete the steps
described in this chapter after creating an FDM database or performing a database
upgrade process for an FDM database. The specific topics covered in this chapter
include:

■ Overview of Discoverer Business Areas

■ Installing the End User Layer

■ Upgrading Business Areas from Previous OFSA Versions

■ Importing OFSA Business Areas for Discoverer

■ Market Manager Business Areas and Standard Reports

■ Installing and Configuring the OFSA Standard Reports

Additional information on installing and configuring the Oracle database for the
Oracle Financial Services Applications (OFSA) group of applications is found in the
reference manuals and installation guides associated with the Oracle database and
applications you are installing.

Overview of Discoverer Business Areas
Included with the OFSA CD are pre-configured Discoverer Business Areas for:

■ OFSA Standard Reports

■ Market Manager Reports

These Business Areas enable users to run the seeded reports against the FDM
database.

Installing the End User Layer

13-2 Oracle Financial Services Installation and Configuration Guide

This chapter provides instructions for creating the required Discoverer End User
Layer (EUL) as well as for loading the OFSA Business Areas and Market Manager
Business Areas into this EUL by importing various export files (EEX) using the
Oracle Discoverer 3.1 Administration edition.

For information on how to use the OFSA Standard Reports and Business Areas,
refer to the Oracle Financial Data Manager Reporting Administration Guide. For
information on how to use the Market Manager Reports and Business Areas, refer
to the appropriate documentation for Oracle Market Manager (OMM).

Installing the End User Layer
Before using Discoverer, you must install an End User Layer (EUL). An EUL is a set
of tables that contains all the information that Discoverer requires to operate. To use
the OFSA Business Areas for Discoverer, an End User Layer named OFSA_
EULOWNER is required:

The Discoverer End User Layer for the OFSA Business Areas must be named
OFSA_EULOWNER. However, you can install and use additional public EULs if
you want.

Complete the following steps to create an Oracle user and public Discoverer 3.1
EUL owned by OFSA_EULOWNER.

1. Log in to Discoverer 3.1 Administration Edition as either the SYSTEM user or
the FDM Schema Owner.

2. When asked if you want to create an EUL, select Yes.

3. Select Create an EUL from the options available when the EUL Manager dialog
appears.

4. Select Create a new user and make sure that Grant access to PUBLIC is chosen
when the Create EUL Wizard appears.

Note: FDM 4.5 supports the use of the Market Manager 4.0
business areas and standard reports. However, the Market Manager
application and Market Manager Business Areas are not included
on the OFSA 4.5 CD. Use the OFSA 4.0 CD for any instructions in
this chapter regarding installation of the Market Manager business
areas.

Upgrading Business Areas from Previous OFSA Versions

Installing and Configuring Discoverer 13-3

5. Enter OFSA_EULOWNER for the username and a password that you select.

6. Choose Next in the wizard and then select the appropriate Default and
Temporary tablespaces for the EUL objects. After making these selections
choose Finish in the wizard.

7. Repeat these steps to create additional EUL Owners beyond the required
OFSA_EULOWNER End User Layers.

Upgrading Business Areas from Previous OFSA Versions
This section describes how to preserve user customizations of OFSA business areas
when upgrading from OFSA 4.0.

Oracle Discoverer 3.1 Administration Edition does not support upgrade of OFSA
business areas from OFSA 4.0 to FDM 4.5. These business areas were previously
stored in OFSA_EULOWNER and OFSA_SYSTEM End User Layers. If you
customized the OFSA business areas in OFSA 4.0 and want to preserve those
customizations, perform the following procedures to incorporate the contents of
those folders into the new OFSA 4.5 business areas.

FDM Reserved Business Area Names
FDM 4.5 reserves the following Oracle Discoverer business area names:

■ FDM

■ FDMA

■ PA

■ RM

■ RTM

Note: The instructions in this section apply only for situations
where you are upgrading from OFSA 4.0 and want to preserve
customizations of the OFSA business areas. Skip this section and
proceed to the Installing the End User Layer if you are new to FDM
4.5 installation.

Upgrading Business Areas from Previous OFSA Versions

13-4 Oracle Financial Services Installation and Configuration Guide

Migrating Business Areas for OFSA_EULOWNER:
1. Login to the Discoverer Administration Edition as OFSA_EULOWNER. This is

typically where you set up your previous user-defined OFSA Business Areas.

2. Select Cancel when the Load Wizard dialog appears.

3. Export the customized business areas that you want to save to a backup
location on your PC. To export these business areas, select File>Export, and
enter a destination filename. Click Save.

4. Skip the next section for Installing the End User Layer.

5. Follow the instruction described in Importing OFSA Business Areas for
Discoverer OFSA.

6. Log into the Discoverer Administration Edition as OFSA_EULOWNER.

7. Select Open an existing business area.

8. Click Select Al and then Finish.

9. Ensure that you have the six new OFSA business areas. If not, repeat step 5.

10. Expand an OFSA business area into that you want to place one of your
customized folders.

11. Highlight the user-defined (customized) folders. Hold down the shift key for
multiple selection.

12. Drag and drop the desired folders into the new OFSA business area. Note that
the folder name must be unique. Rename the folder if necessary using the
Folder Properties dialog invoked by right clicking on the folder.

13. Repeat steps 9 through 11 for each OFSA business area into which you want to
place customized folders.

Note: This procedure assumes that none of your existing business
areas from OFSA 4.0 conflict with the FDM reserved business area
names. If any of your existing business areas conflict with the
business area names reserved in FDM 4.5, rename the existing
folder to a new name prior to performing any of the procedures.

Upgrading Business Areas from Previous OFSA Versions

Installing and Configuring Discoverer 13-5

Migrating Business Areas for OFSA_SYSTEM:
In FDM 4.5, the OFSA_SYSTEM End User Layer no longer exists. However, the
business areas in this EUL are merged into the new FDM business area in OFSA_
EULOWNER. If you have modified any of the business areas in the OFSA_SYSTEM
EUL and you want to incorporate their contents into the new FDM 4.5 business
areas, perform the following procedures:

1. Login to the Discoverer Administration Edition as the EUL owner, that is,
OFSA_SYSTEM, which contains the OFSA System Business Areas.

2. Select Cancel when the Load Wizard dialog appears.

3. Export the business areas that you want to save to a backup location on your
PC. To export the business areas, select File>Export, and enter the filename you
want to save as, for example, my_ofsa_system_ba.eex. Click Save.

4. Select Open an existing business area. Click Select All and then Finish.

5. Expand the new FDM business area. This is the place to which your previous
customized folders exported from OFSA_SYSTEM EUL should go.

6. Import the my_ofsa_system_ba.eex file created in step 3. To import the eex file,
select File>Import, and navigate to the eex file on your PC. Leave the default
Import Options as selected, and then double click on the Business Area
filename on your PC. Wait until the business area file has been imported.

7. Highlight the imported business area and select File>Refresh>Finish. This
action launches a process that associates the structures within the business area
with the correct tables in the OFSA database. Select OK for any dialogs that
appear.

8. Expand the customized business area you want to preserve.

9. Highlight the user-defined folders. Hold down the shift key for multiple
selection.

10. Drag and drop the desired folders into new FDM business area. Note that the
folder name must be unique. Rename the folder if necessary using the Folder
Properties dialog invoked by right clicking on the folder.

Note: The File>Export option in Discoverer Administration is not
available unless a Business Areas is highlighted.

Importing OFSA Business Areas for Discoverer

13-6 Oracle Financial Services Installation and Configuration Guide

Importing OFSA Business Areas for Discoverer
The OFSA Business Areas are created and configured using the Discoverer
Integrator and Discoverer Administration Edition. To run the OFSA Standard
Reports, you import these Business Areas into the OFSA_EULOWNER EUL,
although you can use other EUL Owners in addition to OFSA_EULOWNER if you
want. For names and descriptions of the database tables contained in the OFSA
Business Areas, refer to the Oracle Financial Data Manager Reporting Administration
Guide.

To install the OFSA Business Areas, complete the following steps.

1. Login to FDM Administration as a user with the authority to manage security.

2. Register the OFSA_EULOWNER within FDM Administration using the User
Registration wizard.

3. Within FDM Administration, grant the following roles to the OFSA_
EULOWNER user:

■ OFDM_R_REPORT_MART

■ OFDM_R_BUSINESS_PROCESS

■ OFDM_R_FDMA_RPT

Of course, you may want to grant additional roles to the OFSA_EULOWNER
user. The roles listed constitute only the minimum privileges that are required
for the OFSA_EULOWNER user.

4. Install the Discoverer End User Layer (EUL) export files on the client. The client
must also have Discoverer 3.1 Administration Edition installed.

When you select the Standard Reports for Oracle Discoverer (within the FDM),
the Oracle Installer creates the following directory on the PC:

Note: Refer to the Oracle Discoverer 3.1 Administration Guide for
more information.

Caution: Before proceeding with this installation, you must either
have the FDM database, Release 4.5, installed on your server or
have upgraded your FDM database to Release 4.5.

Market Manager Business Areas and Standard Reports

Installing and Configuring Discoverer 13-7

$ORACLE_HOME/OFSA45/disco31

and copies the following files into that directory:

5. Log into the Discoverer Administration Edition as OFSA_EULOWNER.

6. Select Cancel when the Load Wizard dialog appears.

7. To import the OFSA Business Areas, select File>Import. Leave the default
Import Options as selected, and then double click on the Business Area
filename. Do this for each OFSA Business Area file until all of them have been
imported.

8. Highlight the business areas and select File>Refresh>Finish. This action
launches a process that associates the structures within the business area with
the correct tables in the OFSA database. Select OK to any dialogs that appear.

9. Grant access to the appropriate OFSA Business Areas to the FDM Schema
Owner and all users that need to use the areas. You must refer to the Oracle
Discoverer 3.1 Administration Guide for the specific steps required to complete
this grant access procedure.

Market Manager Business Areas and Standard Reports
FDM does not include any Market Manager business areas or standard reports for
version 4.5. This is because there is no version 4.5 of Market Manager. Rather, FDM
4.5 supports the 4.0 Market Manager application. Any of the 4.0 Market Manager
business areas and standard reports can be used in an FDM 4.5 database with
Market Manager installed.

EEX File Name Description

fdm_ba.eex FDM Business Area

fdma_ba.eex FDM Administration Business Area

pa_ba.eex Performance Analyzer Business Area

rm_ba.eex Risk Manager Business Area

rtm_ba.eex Rate Manager Business Area

Installing and Configuring the OFSA Standard Reports

13-8 Oracle Financial Services Installation and Configuration Guide

If you do need to re-install your 4.0 Market Manager Business Areas and/or
Standard Reports, follow the Market Manager specific instructions included in the
OFSA Database Installation chapter of the OFSA 4.0 Installation and Configuration
Guide.

Installing and Configuring the OFSA Standard Reports
The OFSA Discoverer Standard Workbooks are copied to the PC during the
client-side installation process. However, in order to use these workbooks, you must
populate the Discoverer EUL using Discoverer Integrator and then map the
workbooks to it. For instructions on this process, refer to the Oracle Financial Data
Manager Reporting Administration Guide.

Note: If you are upgrading from Market Manager 3.5/4.0, you do
not need to re-install the Market Manager Business Areas. These
business areas are unchanged in version 4.5. You only need to
import the Market Manager Business Areas if you are installing
Market Manager for the first time in your database.

FDM Security 14-1

14
FDM Security

This chapter provides information on the database security framework of the 4.5
Oracle Financial Data Manager (FDM) database. The FDM security framework
describes the constructs and tools available to the administrator for managing
database and application security for the Financial Data Manager environment.
Included in this discussion is information regarding how the security model was
migrated from an Oracle Financial Services Applications (OFSA) version 3.5 and 4.0
database.

The information in this chapter is supplemental to the information provided in the
Oracle Financial Data Manager Administration Guide. The Oracle Financial Data
Manager Administration Guide provides detailed information about using the FDM
Administration application, including information about the various security
features available for the FDM database.

The following, specific topics are covered in this chapter:

■ FDM Schema Owner

■ Database and Application Privileges

■ FDM Security Framework

■ Division of Administrative Responsibilities

■ Managing Security for the Reporting Data Mart

■ Troubleshooting Privilege Errors

■ Migration from Version 3.5 or 4.0 Security

FDM Schema Owner

14-2 Oracle Financial Services Installation and Configuration Guide

FDM Schema Owner
The FDM Schema Owner is the Oracle RDBMS username that owns all of the FDM
Reserved database objects. This username is the source for all privileges within the
FDM database. By definition, the FDM Schema Owner is an all powerful user
account with no security restrictions.

The FDM Schema Owner is identified during the FDM Database Creation Process.
This process creates an entry in the OFSA_DB_INFO table identifying the owner of
the FDM Reserved objects. In order for a database to be valid, the entry in OFSA_
DB_INFO must be the same user that owns the FDM Reserved objects.

The FDM Schema Owner is the only user account that is allowed to grant
administration privileges to other users within the FDM Administration
application.

Database and Application Privileges
This section describes how to implement security for the Financial Data Manager
database environment. The following specific topics are discussed in this section:

■ FDM Security Framework

■ Universal Login

■ Database Object Privileges

■ Roles

■ Assigning and Revoking Database Privileges

■ Oracle Password Aging, Expiration and History

■ FDM Grant Procedures

■ Supporting Seeded Data

Note: This section discusses FDM database privileges in detail.
OFS Application privileges (which includes both Application and
Function privileges) are discussed more completely in the Oracle
Financial Data Manager Administration Guide.

FDM Security Framework

FDM Security 14-3

FDM Security Framework
The FDM Security Framework describes how security is implemented within the
FDM database environment for the OFS applications. The FDM Security
Framework is composed of different entities and types of privileges used for
implementing security.

By default, registered users have no privileges unless specifically granted by the
administrator. However, exceptions to this include two seeded roles (OFDM_R_
LOGIN and OFDM_R_ID) granted to users automatically by the FDM
Administration application during user registration.

The various entities and privilege types employed in the FDM Security Framework
are described as follows:

Applications

Users

Application PrivilegesDatabase Privileges

Static
Privileges

Functions
Dynamic

Privileges

ID
Folders

User
Groups

Security
Profiles

Roles

FDM Security Framework

14-4 Oracle Financial Services Installation and Configuration Guide

Database Privileges
Database Privileges are defined as the ability to perform SELECT, INSERT,
UPDATE, DELETE or EXECUTE operations against database object. Database
Privileges are categorized as either Static or Dynamic:

■ Static Privileges are on FDM objects that always exist

■ Dynamic Privileges are on FDM objects created by Risk Manager and
Transformation processing

Application Privileges
Application Privileges are defined as the ability to use OFS applications.

■ Application Privileges are the ability to login to an OFS application

■ Function Privileges are the ability to perform specific operations within an OFS
application

Roles
Roles are collections of database object and database system privileges. Assign roles
to User Groups so that all members within the User Group receive the role. You can
also assign Roles directly to individual users.

Security Profiles
Security Profiles are collections of application privileges. Assign Security Profiles to
User Groups so that all members of the User Groups receive the associated
privileges. You can also assign Security Profiles directly to individual Users.

User Groups
User Groups are collections of Users. Assign Roles and Security Profiles to User
Groups so that all members within the User Group receive the associated privileges.

ID Folders
ID Folders are collections of OFSA IDs. Assign ID Folders to User Groups so that all
members of the User Group have access to the ID Folder. You can also assign ID
Folders directly to individual users.

Users
Users are registered FDM Users.

FDM Security Framework

FDM Security 14-5

Universal Login
The concept of a Universal Database Login embodies the ability to login to the FDM
database from any application or SQL compatible tool using a single login account.
FDM 4.5 supports this concept by distinguishing database privileges for Internal
use or External use. Internal privileges are available to users only when logged into
one of the OFS applications. External privileges are always available to users.

Users therefore only require a single user account for the FDM database. This is in
contrast to previous versions of OFSA, in which users needed two users accounts -
one for the OFS application operations and the other for reporting.

Database Object Privileges

Privileges for FDM Reserved Objects
FDM Reserved Objects are those objects created by the FDM database installation
that are required for OFS application operations. FDM Reserved objects include all
of the database object names reserved by the applications, such as table names,
sequence names, view names, etc. FDM Reserved names are prefixed with OFSA_
for easy identification.

In general, privileges for FDM Reserved Objects are provided by seeded roles.
Seeded roles are created during the FDM database upgrade and database creation
processes. Each role is associated with a particular OFS application and provides all
of the access required for operations within that application.

The FDM database includes seeded Internal roles for operations performed when
logged into one of the OFS applications. FDM also provides seeded External roles
for user reporting and querying.

Privileges for Client Data Objects
Client Data Objects include any objects not created by the initial installation of the
FDM database. This category of objects is comprised of objects created by
administrators as well as the LEDGER_STAT table. LEDGER_STAT is technically a
reserved table name because FDM reserves this particular table name as well as a
particular table structure for it. However, because LEDGER_STAT stores client
account and statistical data, privileges for this table are the purview of the
administrator and are not included in the seeded roles.

It is the administrator’s job to create roles to provide privileges on Client Data
Objects to the users. By default, users have no database privileges on these tables,

FDM Security Framework

14-6 Oracle Financial Services Installation and Configuration Guide

except for users that migrated from a 3.5 or 4.0 database. All users require access to
these objects in order to perform their duties.

Privileges for Dynamic Objects
Dynamic objects are those tables created by Risk Manager and Transformation
output processing. These tables are considered to be Client Data Objects, and are
therefore managed by roles created by the administrator. However, because these
objects are created during processing rather than directly by the administrator,
security management is for them different than that for static objects.

The FDM Administration application provides functionality for managing
privileges for dynamic objects. Refer to the Oracle Financial Data Manager
Administration Guide for more information on how to manage privileges for
dynamic objects.

Roles
The FDM 4.5 database security framework relies on roles to provide database
privileges for users. Administrators are allowed to create their own roles to manage
database privileges, as well as use any existing roles that they already have. This
flexibility facilitates the integration of FDM with other data stores.

Internal and External Roles
Roles registered in FDM are categorized as either Internal or External.

Privileges in External roles are available to users during any database session.
External roles provide privileges that are meant to be available to users at all times,
within any database session.

Internal roles are password protected roles that are available to the users only when
they are logged into one of the OFS applications. The OFS applications
automatically enable (via the set role command) any registered Internal roles
assigned to the user within the FDM metadata during login. Only roles registered
with FDM and assigned to the user using the FDM Administration application are
enabled in this manner.

Internal roles provide privileges that are meant to be available to users only when
logged into one of the OFS applications. In general, users require greater privileges
for operations and processes within the individual OFS applications. Because
Internal roles are password protected, they provide a mechanism to grant such
privileges to users that are not available in unprotected database sessions, such as
SQL*Plus.

FDM Security Framework

FDM Security 14-7

Role Registration
Any role that the administrator intends to use with the FDM database should be
registered using the FDM Administration application. Role registration provides
several benefits for the administrator, including:

■ the ability to distinguish privileges available only within the applications
(Internal Roles) versus privileges available in any database session (External
Roles).

■ automatic refresh of any privileges assigned within the FDM Administration
application by way of the Grant All procedure.

■ the ability to assign Roles to FDM User Groups as well as users.

■ the ability to associate Table Classifications and Table Names for dynamic
privileges

For more information regarding Role Registration, refer to the Oracle Financial Data
Manager Administration Guide.

Sharing Roles within a Data Store
Any role that exists in the database instance can be registered with the FDM
metadata, including roles used by other applications. Roles shared with other
applications should always be registered as External roles because they provide
privileges that need to be available within any database session. Registering such
roles enables the administrator to minimize the number of roles required to manage
security within the instance.

Role Passwords
FDM requires that all Internal roles are password protected. This ensures that
privileges for Internal roles are available to users only when they are logged into
one of the OFS applications.

Caution: The FDM Role Registration process removes Internal
roles from the default list for all registered FDM users. These roles
are not available for FDM user’s database session unless they are
logged into an OFS application. Register roles as Internal only if
you intend for the database privileges conveyed by the role to be
exclusively available within OFS applications.

FDM Security Framework

14-8 Oracle Financial Services Installation and Configuration Guide

The Oracle password for the role is not encrypted, however, the Role passwords are
stored in an encrypted form in the FDM database to prevent users from discovering
role passwords by querying the FDM Metadata. The OFS applications read this
encrypted form of the password during the role enabling process. Role passwords
are encrypted using a key value from the OFSA_CONTROL table. The FDM
database creation and upgrade processes seed OFSA_CONTROL with a default
encryption key.

Only the FDM Schema Owner has privileges to the OFSA_CONTROL table. Oracle
recommends that you do not allow any other users access to this table. There is no
reason to change the encryption key value unless your role passwords have been
compromised. If you do change the value of your encryption key in OFSA_
CONTROL, users are unable to access any Internal roles until you reset the
passwords in FDM Administration. To do this, login to the FDM Administration
application and click the Change Password button for each password protected
role. FDM Administration then uses the new value in OFSA_CONTROL to encrypt
the role password.

Assigning and Revoking Database Privileges
The rules for assigning and revoking of database privileges within FDM
Administration require explanation due to the nature of these operations:

Note: FDM encrypts the role password only for storing it in the
FDM Metadata. When you specify the role password, either in
FDM Administration or directly in SQL*Plus, that password is the
real password for the role. This enables you to share password
protected roles with other applications in the database instance
because the real role password is not encrypted.

Caution: All passwords for FDM seeded Internal roles are set to
XXADCFGZ by the FDM database upgrade and database creation
processes. Oracle recommends that you change these role
passwords by using the Password button on the Roles tab within
the FDM Administration application.

FDM Security Framework

FDM Security 14-9

Assigning Database Privileges
When you grant an database object privilege or a role within the FDM
Administration application, the application automatically executes a grant
statement for that privilege within the Oracle RDBMS. Thus, if you assign a role to a
User Group within FDM Administration, the role is immediately granted directly
within the Oracle RDBMS to all users of that User Group. If you assign the SELECT
privilege on the DEPOSITS table to a role using the FDM Administration
application, the application immediately executes a grant statement for the object
privilege as well. This is true for both Internal and External roles for any privileges
or role assignments performed within FDM Administration.

Assignment of Dynamic privileges, however, does not result in any immediate
grant statement. When you make a dynamic privilege assignment within the FDM
Administration application, the privilege assignment is operational for any future
dynamic objects created by the OFS applications. For example, if you assign the
SELECT privilege to a role on the RM Detail Results Table Classification, then that
role receives that privilege for any future objects of that Table Classification. It does
not receive privileges on existing RM Detail Results tables, unless you run the Grant
All or Grant All Dynamic Privilege procedures.

Revoking Privileges
Database Object and System privileges are immediately revoked from a role if you
remove the privilege within FDM Administration. FDM Administration
automatically executes the revoke statement for the privilege within the Oracle
RDBMS.

However, if you remove a role from a recipient with the FDM Administration
application, the application only revokes the role from the user if it is an Internal
role, and if it is the only remaining source from which the user receives the role. For
example, assume that a user belongs to a User Group that is currently assigned the
OFDM_R_RM role. If you remove the role from the User Group, FDM
Administration only revokes the role from the user within the Oracle RDBMS if the
user does not receive the role from another source, either directly, or from another
User Group of which it is a member. In this example, if the user also was a member
of another User Group that also is assigned the OFDM_R_RM role, then removing
the role from the (first) User Group does not result in a revoke statement. The user
continues to receive the privilege from the role.

Unregistering a User revokes all FDM registered Internal roles from that user.
Unregistering a User Group revokes all FDM registered Internal roles assigned to
that User Group from the User Group members if that User Group was the only
source from which they received the role(s).

FDM Security Framework

14-10 Oracle Financial Services Installation and Configuration Guide

External roles are never revoked from users within FDM Administration. Because
these roles are potentially shared within a data warehouse, the FDM Administration
application never issues any revoke statements for External roles. To revoke these
roles from a User, you must remove any assignments of them from the user within
FDM Administration and then manually issue the revoke statement within the
Oracle RDBMS.

Removing a Dynamic Privilege assignment within FDM Administration only
removes the privilege for future dynamic tables created by the OFS applications. It
does not revoke the privilege from the user on any existing objects. To revoke
privileges on existing dynamic objects, remove the role receiving the dynamic
privilege from the user and then manually issue revoke statements for any existing
objects from that user.

Oracle Password Aging, Expiration and History
The Oracle8i RDBMS provides functionality for password aging, expiration, and
history. These features can be implemented within the FDM 4.5 database
environment. However, Oracle error messages generated as a result of these
features do not display the message text properly for any of the client OFS
Applications that rely upon the 16 bit SQL*Net technology stack for database
connectivity. If you have implemented any of the password aging, expiration, and
history features native to the Oracle 8i RDBMS, your users receive
message-not-found errors in these applications whenever their password is expired
or their account is locked.

Examples of such message are:

Message 28000 not found
Message 28001 not found

The actual message text for these errors is:

ORA-28000 account is locked
ORA-28001 the password has expired

Note: External roles are never revoked within FDM
Administration. To revoke External roles from a user, remove the
assignments within FDM Administration and then manually issue
the revoke statement within the Oracle RDBMS.

FDM Security Framework

FDM Security 14-11

The OFS client applications relying upon the 16 bit SQL*Net technology stack are:

■ Oracle Balance and Control

■ Oracle Performance Analyzer

■ Oracle Risk Manager

■ Oracle Transfer Pricing

All other OFS applications (Oracle Discoverer Integrator, FDM Administration, and
Oracle Rate Manager) display the appropriate message text for password aging,
expiration, and history errors.

FDM Grant Procedures
FDM provides several procedures for refreshing and reapplying privileges. These
procedures are all part of the Grant All process. Launching Grant All executes each
of the following individual procedures:

■ Grant All Object Privileges (grant_all_db_obj_privs)

■ Grant All Roles (grant_all_db_roles)

■ Grant All Dynamic Privileges (grant_all_dyn_obj_privs)

■ Analyze All Objects (analyze_all)

■ Create Public Synonyms (create_all_public_synonyms)

Note: If you have implemented any of the password expiration
features, the database may require the users to specify a new
password at login. However, the OFS applications do not allow
users to enter a new password at the login prompt. In order to enter
a new password, users must login to SQL*Plus directly. SQL*Plus
then prompts the user to enter a new password if their current
password is expired. This behavior applies to all of the OFS
applications, not just the ones relying upon the 16 bit SQL*Net.

Caution: Do not display the prompt for new passwords.

FDM Security Framework

14-12 Oracle Financial Services Installation and Configuration Guide

Each of these tasks can be launched individually or as a collective unit from within
the FDM Administration application.

To launch all of the procedures as a collective unit, run the Grant All menu option
from within FDM Administration or execute the following directly in SQL*Plus:

SQL> execute ofsa_dba.grant_all(login_name, execution_mode);

The login_name parameter passed to the procedure identifies how log entries for
the process are stored in the audit table (OFSA_STP). Pass in the login_name
parameter within single-quote marks. The execution_mode parameter designates
that you are running the procedure from the command line in SQL*Plus. When
running Grant All from SQL*Plus, pass this parameter as COMMAND_LINE. For
example:

SQL> execute ofsa_dba.grant_all(’OFSA’, ’COMMAND_LINE’);

To launch the procedures individually, run the appropriate menu option within the
FDM Administration application, or execute the following directly in SQL*Plus:

SQL> execute ofsa_dba.procedure_name(login_name);

The procedure_name is one of the individual procedure names in parenthesis. The
execution_mode parameter is not required to launch the procedures individually.

Revoke of Unassigned Internal Roles by Grant All
In addition to executing each of the following procedures, Grant All also revokes
any unassigned Internal roles from FDM user. An unassigned Internal role is a role
registered as Internal to which the user does not have an assignment in the FDM
Metadata. Grant All compares the role assignments in the FDM Metadata to the
current role privileges in the Oracle RDBMS catalog. Any Internal roles assigned to
users in the Oracle RDBMS catalog that are not assigned to users in the FDM
Metadata are immediately revoked.

Note: Analyze All is only available as a separate procedure from
within the FDM Administration application. Because Analyze All
may require significant time to complete when run on a database
with a large number of rows, this procedure is not executed
automatically when you launch Grant All from within the FDM
Administration application. However, Analyze All is executed
automatically when you run Grant All from the command line in
SQL*Plus.

FDM Security Framework

FDM Security 14-13

This revoke ensures that users receive Internal role privileges only when logged
into an OFS application. Do not grant roles registered as Internal in FDM to users
outside of the FDM Administration application (in other words, do not grant such
roles to users in SQL*Plus). Such grants invalidate the FDM security
implementation. If your users require privileges external to the OFS applications,
grant External roles to the users within FDM Administration.

Grant All Object Privileges
This procedure re-applies any grants on static objects assigned using the FDM
Administration application. For example, if the SELECT privilege on the DEPOSITS
table is assigned to a role using FDM Administration, this procedure re-executes the
grant statement for that privilege. This is useful for situations where existing grants
are no longer valid.

Grant All Roles
This procedure refreshes grants of roles to users assigned using the FDM
Administration application. Roles granted to User Groups are also refreshed for
each of the individual members of the User Group.

This procedure also revokes any FDM registered Internal roles that are not assigned
to the user within the FDM Metadata but are still designated as granted to that user
within the Oracle RDBMS catalog.

Grant All Dynamic Privileges
This procedure refreshes any grants on dynamic objects assigned using the FDM
Administration application. For roles associated with Table Classifications
(Dynamic Table Classification Privileges within FDM Administration), this
procedure re-executes the privileges assigned to the roles for all objects of the
designated Table Classification. For example, if the administrator assigns the
SELECT privilege to the RM_REPORTING role for the Risk Manager Results Table
Classification, this procedure re-grants this privilege to the RM_REPORTING role
for all objects of that classification.

For more information regarding how to assign dynamic privileges, refer to the
Oracle Financial Data Manager Administration Guide.

Analyze All Objects
This procedure performs the analyze table estimate statistics SQL command for all
tables registered within the FDM metadata.

FDM Security Framework

14-14 Oracle Financial Services Installation and Configuration Guide

Create Public Synonyms
This procedure drops and recreates public synonyms for all registered objects
within the FDM metadata.

Troubleshooting FDM Grants Procedures
The Grant All procedure (and any of its component procedures) records a log entry
into the OFSA_STP table for all DDL statements that it executes. This includes grant
statements (such as grant select on object_name to username) as well as any object
creation statements (such as public synonym creation). These log entries are
recorded with an audit identifier labeled as the USERNAME column in the OFSA_
STP table.

If you are encountering issues with any of the grants procedures, review the entries
in the OFSA_STP table for additional information. Oracle recommends that you
truncate the OFSA_STP table prior to attempting to review any log entries, to make
it easier to find the information pertaining to your particular run. Because the data
stored in the OFSA_STP table is only log data, you can truncate this table at any
time.

Common Errors
One error that does tend to occur when databases are imported and exported within
the same instance is the following (in this example PKMOFSA is the name of the
FDM Schema Owner):

ERROR at line 1:

ORA-04021: timeout occurred while waiting to lock object PKMOFSA.HROLE

ORA-06512: at "PKMOFSA.HROLE", line 568

ORA-06512: at "PKMOFSA.HROLE", line 595

ORA-06512: at "PKMOFSA.OFSA_DBA", line 88

ORA-06512: at line 1

This error occurs because one or more of the Market Manager version 4.0 roles
(QUERY, USER or ADMIN) was originally created by a username other than the
current FDM Schema Owner. The Grant All procedure is attempting to drop these
roles, and is unable to lock the object. To resolve this problem, manually drop the
Market Manager roles and then execute the Grant All procedure again. Because
Grant All recreates the roles anyway, manually dropping these roles does not cause
any problems.

FDM Security Framework

FDM Security 14-15

Supporting Seeded Data
FDM provides seeded data to facilitate assigning database and application
privileges to users. This seeded data is comprised of Roles, User Groups and
Security Profiles. The seeded data makes it easier for you, as an administrator, to
provide users with the privileges that they need to perform required operations
within the OFS applications.

FDM Administration seeded data is categorized as either Protected or Unprotected.
Seeded entities identified as Protected can be assigned/revoked to/from users, but
is restricted from edit or modification. Seeded entities identified as Unprotected are
not restricted from edit or modification.

The following seeded data is discussed in this section:

■ Roles

■ Security Profiles

■ User Groups

Roles
Seeded roles providing privileges on FDM Reserved Objects are designated as
Protected. Because the nature of FDM Reserved objects are subject to change
between releases, roles providing privileges for these objects cannot be edited. Of
course, FDM Administration provides the capability for you to create and define
your own roles for providing privileges on FDM Reserved Objects. However, in
most cases this is unnecessary as the seeded roles provide the appropriate level of
security for OFS application operations.

Users are assigned two required roles automatically by the FDM Administration
application during User Registration. These roles are OFDM_R_LOGIN and
OFDM_R_ID. Both of these roles are assigned directly to the user. They comprise
the minimum privileges users need for OFS application operations. These roles
cannot be revoked from the user. To revoke the privileges provided by these roles
from a user, you must unregister the user from FDM.

FDM also provides seeded roles for privileges on seeded Client Data Objects. The
FDM Financial Data Model includes many seeded objects that are not FDM
Reserved. These objects include instrument tables, transaction tables and other
supporting account data tables. FDM provides seeded roles for these objects that are
Unprotected. Administrators are encouraged to edit and modify these roles as
necessary, or to create new roles, to provide appropriate database privileges for
users.

FDM Security Framework

14-16 Oracle Financial Services Installation and Configuration Guide

Users require Internal privileges for performing operations while logged into the
OFS applications, such as running processes and defining business assumptions.
Users require External privileges for performing reporting and ad-hoc querying.
FDM provides seeded roles for both of these privilege categories.

Internal Privileges

To perform Internal OFS application operations, users require privileges on FDM
Reserved objects as well as the Client Data objects. In general, users require full
privileges (SELECT, INSERT, UPDATE and DELETE) on these objects for internal
application tasks. As these privileges are provided to users with Internal roles, the
assigned OFS application and functional security privileges control user operations.

In order to simplify security management, each OFS application has a
corresponding Internal role for the privileges required to perform operations for
that application. In addition, FDM provides a separate role for Internal privileges on
the seeded client data tables (such as Instrument tables, Transactions tables, Ledger_
Stat, etc.).

The 4.5 Database Upgrade/Creation Process provides the following seeded roles for
OFS application operations:

■ OFDM_R_BC (Balance and Control)

■ OFDM_R_CLIENT_PROC (instrument and Client Data objects)

■ OFDM_R_DI (Discoverer Integrator)

■ OFDM_R_FDMA (FDM Administration)

■ OFDM_R_PA (Performance Analyzer)

■ OFDM_R_RM (Risk Manager)

■ OFDM_R_RTM (Rate Manager)

■ OFDM_R_TP (Transfer Pricing)

Each of these roles provides the privileges needed to perform tasks within the OFS
Applications. All of these roles are identified as Internal, except for the OFDM_R_
DI role that is an external role (because Discoverer Integrator requires interaction
with Oracle Discoverer, this role is identified as an External role). All of these roles,
except for the OFDM_R_CLIENT_PROC role, are protected and cannot be modified.

The OFDM_R_CLIENT_PROC role is not specific to any application. Rather, it
provides SELECT, INSERT, UPDATE and DELETE privileges on instrument and
Client Data objects. For a new installation, it provides these privileges on the
instrument, transaction and other account data tables seeded with the FDM

FDM Security Framework

FDM Security 14-17

database. For an upgrade from OFSA version 3.5 or 4.0, it provides these privileges
on all identified Client Data objects. See the Migration from Version 3.5 or 4.0
Security. The OFDM_R_CLIENT_PROC role is Unprotected.

External Privileges

External privileges are required for reporting and ad-hoc querying operations.
Users require such privileges for performing operations in Oracle Discoverer or
SQL*Plus. Users also require such privileges for performing queries within the SQL
Talk interface available within some of the OFS applications.

The majority of users require the ability to SELECT on objects in the FDM database.
For these users, FDM seeds the following External, Unprotected roles:

■ OFDM_R_REPORT_MART

■ OFDM_R_BUSINESS_PROCESS

These roles are composed of several sub-roles.

A small number of users require the ability to SELECT, INSERT, UPDATE and
DELETE on Client Data objects in external database session. For these users, FDM
seeds the following External, Unprotected role: OFDM_R_CLIENT_EXT

Those users in charge of Security and Object Management within FDM
Administration require the SELECT privileges on the FDM Metadata objects. For
these users, FDM seeds the following External, Protected role:

■ OFDM_R_FDMA_RPT

Note: In most cases, you need only to assign either or both of the
OFDM_R_REPORT_MART or OFDM_R_BUSINESS_PROCESS
roles to your users to provide the External privileges that they need
for reporting operations. To do this, assign the user to the OFDM_
G_REPORT_MART User Group.

Note: Few, if any users, should ever require more than the
SELECT privilege on FDM Reserved Objects for External
operations. If for some reason you do need to provide such
privileges, you need to create your own External roles within FDM
Administration.

FDM Security Framework

14-18 Oracle Financial Services Installation and Configuration Guide

OFDM_R_REPORT_MART (External/Unprotected)
The OFDM_R_REPORT_MART role provides complete privileges for results
reporting (that is., non- Business Process reporting). Assigning this role to a user (or
User Group) provides that user with SELECT access on all client data tables, as well
as any results tables, code description tables, audit tables and error message tables.

This high-level role is comprised of several sub-level roles. These sub-level roles are:

■ OFDM_R_GENERAL_RPT

■ OFDM_R_RM_RPT

■ OFDM_R_RTM_RPT

■ OFDM_R_CLIENT_RPT

OFDM_R_GENERAL_RPT (External/Protected)
This role provides privileges on objects that are not specific to any OFS applications.
These are shared objects, or objects that provide functionality for the Reporting Data
Mart.

The OFDM_R_GENERAL_RPT role provides SELECT privileges on the following
categories of objects:

■ FDM Reserved Code Description Tables and Views

■ Functions (OFSA_RDM_YTD, other related tables)

■ Dynamic privileges on Hierarchies (transformation output tables for Tree
Rollups)

■ FDM Reserved Error tables (such as OFSA_PROCESS_ERRORS, OFSA_
MESSAGE_LOG)

OFDM_R_RM_RPT (External/Protected)
This role provides SELECT privileges necessary for Risk Manager operations. This
includes:

■ RM Audit tables (OFSA_PROCESS_CASH_FLOWS)

■ RM Static results (OFSA_RESULT_MASTER, VAR objects, Result Bucket
and Result Header tables)

■ RM Dynamic results (Result Detail tables, EAR results tables)

■ Exchange Rate and Interest Rate Audit tables

■ Other RM ID and Reserved tables (for Business Process reporting)

FDM Security Framework

FDM Security 14-19

OFDM_R_RTM_RPT (External/Protected)
This role provides SELECT privileges for Rates and Conversion tables included in
Rate Manager. This role is also used by the OFDM_R_BUSINESS_PROCESS role.

OFDM_R_CLIENT_RPT (External/Unprotected)
This role provides SELECT privileges on seeded client data tables. This includes:

■ Instrument

■ Transaction

■ Ledger_Stat

■ Services tables

■ Dynamic Privileges for transformed Ledger_Stat

For databases upgraded from OFSA version 3.5 or 4.0, this role is also seeded with
SELECT privileges on any Client Data objects.

OFDM_R_BUSINESS_PROCESS (External/Unprotected)
This role provides privileges necessary to perform Business Processing reporting,
such as reporting on the OFSA IDs and Constructs used in the business process.
This includes privileges on FDM Reserved tables such as ’OFSA_IDT_DATA_
FILTER’ or ’OFSA_CATALOG_OF_IDS’.

This role is comprised of individual, application roles. These roles are identical to
the Internal roles seeded for each application, except that they provide ’SELECT’
access instead of SELECT, INSERT, UPDATE, DELETE. These roles are:

■ OFDM_R_BC_RPT

■ OFDM_R_PA_RPT

■ OFDM_R_RM_RPT

■ OFDM_R_RTM_RPT

■ OFDM_R_TP_RPT

All of these External application roles are designated as Protected.

Note: The OFDM_R_CLIENT_RPT role is designed to be edited
by the administrator to change or modify privileges as needed.

FDM Security Framework

14-20 Oracle Financial Services Installation and Configuration Guide

OFDM_R_CLIENT_EXT (External / Unprotected)
This role provides SELECT, INSERT, UPDATE and DELETE privileges on
instrument and Client Data objects. The 4.5 Database Upgrade Process grants this
role to any users that had update privileges within SQL Talk in the 3.5 or 4.0
versions. For a new installation, this role has privileges only on seeded instrument
and transactions tables (the same tables as for the OFDM_R_CLIENT_RPT role).

OFDM_R_FDMA_RPT (External / Protected)
This role provides SELECT access on the FDM Metadata tables for Security and
Object Management reporting. Users that are members of the OFDM_G_FDMA_
SEC and OFDM_G_FDMA_OBJ User Groups automatically receive this role so that
they have the required privileges for running the standard Oracle Discoverer
reports for the FDM Administration Business Area.

Security Profiles
Security Profiles are much like Roles in that they are collections of privileges.
However, Security Profiles are collections of application privileges specific to the
OFS applications, rather than collections of database object privileges. Security
Profiles provide users with the ability to access OFS applications, as well as perform
tasks and operations (identified as Functions) within them.

FDM provides a seeded Security Profile for each OFS application, except for
Discoverer Integrator, which relies on security from Oracle Discoverer. Market
Manager is also excluded from this.

The following Security Profiles are seeded with FDM 4.5. These Security Profiles are
all designated as Protected and provide full application and function privileges for
each corresponding OFS application:

■ OFDM_S_BC (Balance and Control)

■ OFDM_S_FDMA (FDM Administration)

■ OFDM_S_PA (Performance Analyzer)

■ OFDM_S_PFA (Portfolio Analyzer)

■ OFDM_S_RM (Risk Manager)

■ OFDM_S_RTM (Rate Manager)

Note: The OFDM_R_CLIENT_EXT role is designed to be edited
by the administrator to change or modify privileges as needed.

Division of Administrative Responsibilities

FDM Security 14-21

■ OFDM_S_TP (Transfer Pricing)

If you want to provide limited access to OFS application functions, you need to
create your own Security Profiles. For more information regarding Security Profiles,
refer to the Oracle Financial Data Manager Administration Guide.

User Groups
User Groups in FDM are collections of users. User Groups facilitate security
management within FDM by enabling you to associate Roles (collections of
database privileges) and Security Profiles (collections of application privileges) with
User Groups.

FDM provides a seeded User Group for each OFS application as well as a separate
User Group for Reporting Data Mart access. These seeded User Groups are:

■ OFDM_G_BC (Balance and Control)

■ OFDM_G_DI (Discoverer Integrator)

■ OFDM_G_FDMA (FDM Administration)

■ OFDM_G_PA (Performance Analyzer)

■ OFDM_G_PFA (Portfolio Analyzer)

■ OFDM_G_REPORT_MART (Reporting Data Mart access)

■ OFDM_G_RM (Risk Manager)

■ OFDM_G_RTM (Rate Manager)

■ OFDM_G_TP (Transfer Pricing)

Each seeded User Group is associated with corresponding seeded application roles
(both Internal and External) as well as a seeded application Security Profile. By
assigning a User to a seeded User Group, you are providing that User with all of the
privileges that they need to perform application operations.

For more information on the seeded User Groups, refer to the Oracle Financial Data
Manager Administration Guide.

Division of Administrative Responsibilities
The FDM Schema Owner possesses all privileges required for administering the
FDM database environment. The FDM Schema Owner can also grant to other users
the privileges required to perform security management and object management for
the FDM database. This is accomplished by assigning such users to the OFDM_R_

Managing Security for the Reporting Data Mart

14-22 Oracle Financial Services Installation and Configuration Guide

FDMA_SEC and OFDM_R_FDMA_OBJ User Groups within the 4.5 FDM
Administration application. These users then have the ability to login to the FDM
Administration application and perform security management and object
management tasks.

However, users assigned to one or both of these User Groups possess the required
privileges for security management and object management only when logged into
the 4.5 FDM Administration application. If you require that these users have the
ability to perform administrative tasks outside of the FDM Administration
application, grant the appropriate Oracle RDBMS privileges to these users via an
External role.

Managing Security for the Reporting Data Mart
The Reporting Data Mart is the set of objects within FDM accessed for reporting
purposes. Generally, users conduct reporting operations within FDM using tools
such as Oracle Discoverer, Oracle Reports, or even SQL*Plus. Use of these tools
requires External privileges for the users, meaning that you should assign External
roles to the users so that they have their privileges whenever logged into the FDM
database.

Within the Reporting Data Mart, there are both Static and Dynamic objects. Static
objects are those tables and views that exist permanently (or at least are not
dropped and recreated periodically) within the FDM database. Dynamic objects are
those that are created by OFS Risk Manager and Transformation processing.
Dynamic objects tend to be dropped and re-created periodically by OFS processing.

In order to provide privileges on Dynamic objects, you must assign a Dynamic
Object privilege to a Role (or directly to a user) within FDM Administration.
Dynamic object privileges consist of assigning a privilege (such as SELECT) on a
Table Classification (such as RM Results tables) to a Role or User. When Risk
Manager or Transformation processing creates a table of the specified Table
Classification, the Role or User receives the designated privilege. FDM
Administration also enables you to assign a dynamic privilege for a specific table
name, so that when Risk Manager or Transformation processing creates a table of
that name, the user or role automatically receives the privilege just for that table,
rather than for all tables within a classification.

Generally, users only require the SELECT (External) privilege on objects in the
Reporting Data Mart. For any reporting privilege, whether static or dynamic,
always grant using External roles.

Troubleshooting Privilege Errors

FDM Security 14-23

Refer to the Oracle Financial Data Manager Administration Guide for more information
about how to assign Dynamic Object privileges.

Troubleshooting Privilege Errors
Users may encounter privilege errors in performing operations within the OFS
application. This section describes some of the possible errors.

The FDM Grants procedure (described in this chapter) automatically refreshes all
privilege grants and synonyms. Running this procedure ensures that all of the
grants are up to date and synchronized with the FDM Metadata and may resolve
any Oracle errors that you or your users are experiencing. Oracle recommends that
you run this procedure on a regular basis.

Login Errors
Users may receive one of the following errors during login:

■ You have no authorization to access applications

■ ORA-00942: Table or View does not exist

■ ORA-01031: Insufficient Privileges

At a minimum, in order for a user to login to an OFS application, they must be a
registered user for FDM with the following privileges:

■ OFDM_R_LOGIN Role - FDM Administration assigns this role directly to
the user automatically during the User Registration process

■ Application Assignment - the user must receive an application assignment
either directly to the user, or from a User Group or Security Profile

■ Application role - the user must be assigned to the role for the application,
either directly to the user or from a User Group.

Note: When troubleshooting privilege errors, run the FDM Grants
procedure to ensure that all privilege grants are up to date and
synchronized with the FDM Metadata. Also, use the FDM
Administration Standard Discoverer Reports to identify user
privileges and the source for those privileges.

Troubleshooting Privilege Errors

14-24 Oracle Financial Services Installation and Configuration Guide

Java Class and GenAuthKey errors
If you receive any errors referring to invalid Java Classes or GenAuthKey not
found, then one or both of the following is true:

■ The initjvm.sql package was not loaded successfully into the database

■ The FDM jar files were not loaded successfully into the database

To resolve this problem, verify that you loaded the initjvm.sql package properly
into your FDM database. Refer to the instructions in Chapter 10, "FDM Database
Installation" for details on how to load this package properly.

After you have verified that the initjvm.sql package is successfully loaded into your
database, verify that the FDM jar files were loaded properly. Refer to the
Chapter 21, "FDM Utilities" chapter for details on how to reload these packages.

Errors During OFS Operations
Users may encounter Oracle database errors relating to object access in performing
OFS application operations. Users encounter one of the following two errors when
they do not possess the required database privileges for a specified object:

■ ORA-00942: Table or View does not exist

■ ORA-01031: Insufficient Privileges

The OFS applications and processing operations display objects based upon the
FDM Metadata. The object lists presented to users are not restricted to only those
objects on which a user has privileges. Rather, the OFS applications display objects
based upon the information in the FDM Metadata. It is therefore possible for users
to attempt an operation against on object on which they do not possess privileges.

If the user does require access for an object on which they do not possess the
appropriate privileges, grant a role with the required privileges either directly to the
user, or to a User Group of which they are a member. For OFS application objects
(objects named with the OFSA_ prefix), use the appropriate seeded role. For a client
data object, either use one of the seeded client data roles, or create and register a
new role with the appropriate privilege.

Note: The pick lists and lists of objects presented to users within
the OFS applications are not restricted to only those objects on
which a user has privileges. These object lists are populated based
upon the FDM Metadata and are not specific for each user.

Migration from Version 3.5 or 4.0 Security

FDM Security 14-25

Refer to Supporting Seeded Data for details on the various seeded roles provided in
FDM.

Migration from Version 3.5 or 4.0 Security
Security in OFSA versions 3.5 or 4.0 was managed significantly different than the
new FDM 4.5 Security framework. Users migrated from a 3.5 or 4.0 database to 4.5
retain the same privileges, both database and application. However, because the
OFSA 3.5 and 4.0 versions operated upon a union of restrictions paradigm rather
than a union of privileges paradigm, a migration from these versions creates
challenges for ongoing security management. This section discusses how these
users are migrated to the new security framework, as well as suggestions for
converting such users to a more manageable security implementation.

This section discusses the following topics regarding migration of privileges from
an OFSA 3.5 or 4.0 database:

■ Migration of Database Privilevges

■ Migration of Application and Menu Privileges

■ Guidelines for Managing Security Privileges of Migrated Users

■ Removal of Security Filter

Migration of Database Privilevges

Database Privileges in OFSA 3.5 and 4.0
In OFSA 3.5 and 4.0, users received database privileges from the OFSA_USER role.
All users were assigned to this role. The OFSA_USER role was a dynamic role,
which was assigned SELECT, INSERT, UPDATE and DELETE privileges on all
objects in the OFSA schema. The use of password encryption of user database
passwords ensured the privileges for the OFSA_USER role were only available to
users when logged into an OFS application. Because users did not know their real
Oracle password, they were prevented from logging into Oracle Discoverer and
other query tools with the user account granted the OFSA_USER role.
Administrators created a second, External user account (no password encryption)
for users requiring reporting and ad-hoc query privileges in Oracle Discoverer or
other query tools.

In addition, the SQL Talk menu option within the OFS applications enables users to
run query and update statements against objects in the database. Users with the

Migration from Version 3.5 or 4.0 Security

14-26 Oracle Financial Services Installation and Configuration Guide

Select only restriction were allowed to run only SELECT queries, while users
without this restriction were allowed to execute insert, update, and delete
statements.

FDM 4.5 Database Privileges for Migrated Users
The following table outlines the privileges that users receive when migrated from
an OFSA version 3.5 or 4.0 database.

Migration of Application and Menu Privileges

Application and Menu Privileges in OFSA 3.5 and 4.0
In OFSA 3.5 and 4.0, users had no rights to login to an application unless
specifically granted by the administrator. However, for menu privileges, users by
default possessed all privileges for any application to which they had rights to
login. Administrators then removed privileges from users that were restricted.

Note: All database privileges for migrated users are assigned
directly to their user account. Although this is contrary to the
recommended approach of assigning privileges to User Groups and then
assigning users to the User Groups to receive the privileges, it is
unavoidable. Database privileges were not assigned to Groups in OFSA
3.5/4.0, so all migrations require direct assignment of these roles to the
users.

User Category 4.5 Database Privileges assigned during upgrade process

All Users Internal application role for each application to which user had
access (example OFDM_R_PA for a user with access to
Performance Analyzer.

OFDM_R_CLIENT_PROC role for privileges on Client Data
objects.

Users with SQL Talk
Select Only

OFDM_R_REPORT_MART role

OFDM_R_BUSINESS_PROCESS role

Users with SQL Talk
Update privileges

OFDM_R_REPORT_MART role

OFDM_R_BUSINESS_PROCESS role

OFDM_R_CLIENT_EXT role

Migration from Version 3.5 or 4.0 Security

FDM Security 14-27

Application login privileges in OFSA 3.5/4.0 were therefore a union of all privileges
the user received, either directly on the user account or from any Groups to which
the user belonged. Menu access was a union of any menu restrictions assigned to
the user, either directly or from a User Group.

FDM 4.5 Application and Menu (Function) Privileges for Migrated Users
The 4.5 Database Upgrade Process assigns all application and menu (referred to as
Function privileges in 4.5) privileges directly to the migrated user accounts. Because
4.0 menu security was assigned as restrictions rather grants of privileges, it is
impossible to accurately convert 3.5/4.0 Groups into 4.5 Security Profiles and
maintain the same privilege level.

To complicate matters, the functionality embodied in Groups from OSFA 3.5 and 4.0
is now incorporated into 3 separate entities. The following table illustrates how a
Group from OFSA 3.5 or 4.0 is migrated into the 4.5 structures:

Example: 3.5/4.0 Group name is RM_USERS

Because the Group concept in OFSA 3.5/4.0 embodied the functionality for 4.5 User
Groups, Security Profiles and ID Folders, the Metadata Migration process creates
separate entities from a single Group.

Entity Type New 4.5 Entity Name Notes

User Group G_RM_USERS No specific application
or menu privileges.
Assigned ID Folder
access to the ID Folder
created for the Group.
Users from 3.5/4.0
remain members.

Security Profile S_RM_USERS Same privileges as the
3.5/4.0 Group. However,
not attached to any
users.

ID Folder RM_USERS All IDs from the 3.5/4.0
Group assigned to the
new 4.5 ID Folder of the
same name. ID Folder
access assigned to the
User Group created from
the same 3.5/4.0 Group.

Migration from Version 3.5 or 4.0 Security

14-28 Oracle Financial Services Installation and Configuration Guide

As noted in the table, the menu and application privileges previously assigned to
the 3.5/4.0 Group are now assigned to a 4.5 Security Profile. However, the new
Security Profile is not assigned to any users. Rather, users receive all of their
privileges directly. The migration is performed in this manner because of the change
in security paradigms from union of restrictions to union of privileges. The nature of
this migration means that if users were assigned to the newly migrated Security
Profile, they would possess more privileges than they originally had in 3.5/4.0.

For example, if a user was previously restricted at the user level from opening
Performance Analyzer Allocations but was a member of a 3.5/4.0 Group that did
not have this restriction, the restriction would still be in place for the user in OFSA
3.5 or 4.0. This is because OFSA 3.5/4.0 implements security as a union of restrictions.
However, FDM 4.5 implements security as a union of privileges. Therefore, the 4.5
Database Upgrade Process does not assign users to any of the newly migrated
Security Profiles. To do so would result in the users possessing more privileges than
they originally had in OFSA 3.5/4.0. Rather, the database upgrade process assigns
all privileges directly to the users, regardless of the original source of the privileges.
The new Security Profiles are created only for the contingency that administrators
might desire to use them in the future.

To summarize:

Users

■ All 4.5 privileges are assigned directly to the user.

■ Application login privileges are a union of all application login rights
received in 3.5/4.0, whether directly or from a 3.5/4.0 Group.

■ Function privileges are a union of all menu privileges not restricted from
the user in 3.5/4.0, whether directly or from a 3.5/4.0 Group.

■ Assigned as members of the User Groups that were migrated from 3.5/4.0
Groups.

■ Receive ID Folder access from membership in the User Groups migrated
from 3.5/4.0.

Groups

■ Migrated into 3 new entities - a User Group, a Security Profile, and an ID
Folder.

■ Application and menu privileges are migrated to the new Security Profile.
However, the new Security Profile is not assigned to any users.

Migration from Version 3.5 or 4.0 Security

FDM Security 14-29

■ OFSA IDs are migrated from the Group to the new ID Folder. The new ID
Folder is assigned to the corresponding User Group.

■ The User Group has no menu or application privileges. However, the User
Group is assigned access to the ID Folder. All users that were members of
the 3.5/4.0 Group are assigned as members of the new User Group.

Guidelines for Managing Security Privileges of Migrated Users
Oracle recommends that you reorganize security for any users migrated from OFSA
version 3.5 or 4.0. Application and Function privileges for these users in 4.5 are
direct assignments, thereby creating additional management overhead for
maintaining their security access. A more effective security management strategy
for these users would be to use the new Security Profile entity in 4.5, in conjunction
with User Groups, to simplify security assignments.

Use the seeded User Groups, Security Profiles and Roles if possible. For example,
assign users requiring access to Performance Analyzer to the OFDM_G_PA User
Group. This provides them with the seeded application role as well as the seeded
Security Profile for Performance Analyzer. However, because the seeded User
Groups and Security Profiles provide full function privileges to each application,
you may need to create customized entities to provide the appropriate privileges.

To do this, identify the different categories of users that access the FDM database.
For each different category of user, create a corresponding Security Profile to
manage application and function privileges. Assign users requiring the same
privileges to a single User Group, and assign the Security Profile for these users to
that same User Group. Also assign the seeded application role (such as OFDM_R_
PA) and any appropriate Client Data roles to the User Group. In this manner, the
privilege assignments are greatly simplified. When you need to modify a function
privilege assignment for the entire category of users, all you need to do is make the
modification to the single Security Profile. If you need to modify the database
privileges for the group of users, you need only modify one of the Client Data
Roles, or perhaps created a new customized role.

To summarize, here are some guidelines for security maintenance in 4.5:

1. Assign users to seeded User Groups whenever possible.

2. Create customized Security Profiles for each category of users requiring
separate privileges.

3. Create customized Roles for access to Client Data objects.

Migration from Version 3.5 or 4.0 Security

14-30 Oracle Financial Services Installation and Configuration Guide

4. Assign Security Profiles and Roles to the customized User Group for each
category of users. Assign the seeded application roles (such as OFDM_R_PA) to
the appropriate User Groups.

5. Assign ID Folders to the User Groups to provide users with access to OFSA IDs.

6. Remove application and function privileges assigned to the users directly by
the 4.5 Database Upgrade Process.

Removal of Security Filter
FDM Administration version 4.5 does not include a Security Data Filter feature that
was present in the OFSA 3.5/4.0 System Administration application. Rather, FDM
4.5 relies upon the native Fine Grain Access Control features within the Oracle
DBMS_RLS package. Refer to the Oracle8i Application Developers Guide for more
information regarding Fine Grain Access Control features and the DBMS_RLS
package.

FDM Multi-Language Support 15-1

15
FDM Multi-Language Support

The Oracle Financial Data Manager (FDM) database environment supports the use
of multiple languages (otherwise known as Multi-Language Support or MLS).
Within FDM, Multi-Language Support means that the translatable information,
such as descriptions or display names, is stored in a separate table from the other
attributes of that object. Users then access the data from a database view (termed a
Language Compatible View) joining the translatable information with the base
attributes of the object.

Multi-Language Support within FDM enables users of multiple languages to
retrieve information in their own language from the same database. For example, a
German user logged into the Performance Analyzer application views display
names for FDM tables and columns in German, while an English user logged into
the very same database views display names in English. The FDM database stores
display name translations in both languages simultaneously. The user only views
the translatable values for his or her specific language (based upon the language
installed upon the user’s client PC).

This chapter includes the following topics to describe how multiple language
support is implemented within the FDM database:

Note: Although Release 4.5 of the FDM database provides the
foundation for supporting multiple languages, the individual
applications in the Oracle Financial Services Applications (OFSA)
group of applications are not enabled for Multi-Language Support
for Release 4.5. Also, no translations of the FDM-required seeded
data into non-English languages are available at the publication
time of this guide. The Multi-Language Support capabilities of the
4.5 FDM database environment are available for custom purposes
only.

Session Language

15-2 Oracle Financial Services Installation and Configuration Guide

■ Session Language

■ MLS Database Structures

■ Creating MLS Objects

■ Seeded MLS Objects

Session Language
The Session Language is the language that translatable values appear to the user.
For example, an English user views translatable information in English, while a
German user views translatable information in German.

The Session Language for an operation is determined based upon the origin of that
operation:

Thus, the language for a user running a report from Discoverer on a client PC is
determined based upon the NLS_LANG parameter in the registry on that PC. The
language for the log file for an Allocation process run on the server is determined
by the NLS_LANG environment variable on that server. The language for a query

Note: FDM 4.5 only supports multiple languages in the same
database character set. The Unicode character set is not supported.

Note: Although all seeded FDM tables with translatable values
are MLS-enabled, you are not required to MLS-enable any
user-defined objects that you create for FDM. The flexibility of the
FDM Metadata enables you to define any of your own objects for
single language use only.

Operation Origin Session Language

Client PC based NLS_LANG parameter in the registry.

Server based NLS_LANG environment variable on the server

Browser based (in 3 tier
architecture)

NLS_LANG parameter on the application server

MLS Database Structures

FDM Multi-Language Support 15-3

run from a browser based application is determined by the NLS_LANG parameter
on the application server to which the browser is accessing.

MLS Database Structures
FDM implements Multi-Language Support in Release 4.5 by separating translatable
information (such as written descriptions) from attributes (such as column
attributes). The translatable information is stored in an MLS table while the
attribute information is stored in a Base table. The user or application then retrieves
data from a Language Compatible view that joins the Base table information with
the translatable information in the MLS table.

The OFSA_MLS Table
The OFSA_MLS table identifies all of the languages installed in the database. The
structure of this table is as follows:

MLS_CD NOT NULL VARCHAR2(3)
INSTALLED_FLG NOT NULL NUMBER(1)
LANGUAGE NOT NULL VARCHAR2(30)
DESCRIPTION VARCHAR2(255)

The MLS_CD field identifies the language for translatable values in the MLS tables
in the database. The OFSA_MLS table is populated by the FDM Database Creation
Process. An INSTALLED_FLG = 1 indicates that translatable values for that
language were seeded for all FDM MLS tables by the Database Creation Process.

Base Tables
The Base Table stores all of the non-translatable attributes for an entity. For example,
if you have an Account Officer Type Code where there is a flag identifying if the
Account Officer Type is active, this would be considered a Base table attribute.

The FDM naming convention is that the Base table is the name of the entity. So, for
the FDM Table Classifications, the base table is OFSA_TABLE_CLASSIFICATION.
This convention is further refined in the case of seeded Code tables. The base table

Note: The INSTALLED_FLG is set by the FDM Database Creation
or FDM Database Upgrade Processes. The INSTALLED_FLG must
be set to 1 for a language to be available for use with FDM.

MLS Database Structures

15-4 Oracle Financial Services Installation and Configuration Guide

for all seeded Codes is named _CD. So, for the table storing Accrual Basis Codes,
the base table name is OFSA_ACCRUAL_BASIS_CD.

For seeded Code Description tables, there are no base table attributes other than the
actual code value. Therefore, the base table for these entities contains only the single
code column. For example, the base table for OFSA_ACCRUAL_BASIS contains
only the single column, ACCRUAL_BASIS_CD.

MLS Tables
MLS Tables store all of the translatable attributes for an entity. In the Account
Officer Code example, the display names and descriptions for Account Officer
Types are stored in (a user-defined table) ACCOUNT_OFFICER_TYPE_MLS, which
is separate from the Base table.

MLS tables are always fully populated based upon the languages installed in the
database. In each MLS table, there is always one record per installed language for
each base table record. In other words, every installed language always has a full
compliment of translatable records for each base table record. FDM maintains this
fully populated state by inserting and deleting rows as required using database
triggers. For new inserts, the translatable columns in the MLS table are populated
with defaults from the base table.

The FDM Database Creation and Database Upgrade processes fully populate all
MLS tables. The triggers on the Language Compatible Views maintain this fully
populated state for any new inserts or deletes. For inserts, the triggers provide
default values for the MLS tables. These need to be translated into the appropriate
languages afterwards.

The FDM naming convention is that all tables storing translatable values are named
with the entity name followed by an _MLS suffix. So, for the Accrual Basis Code
example, the MLS table is named OFSA_ACCRUAL_BASIS_MLS.

For details on how to create the appropriate triggers for maintaining a fully
populated state for user-defined MLS objects, refer to Creating MLS Objects.

Language Compatible Views
Each Base table and MLS table have a corresponding Language Compatible view
for all SQL operations for that entity. The Language Compatible View joins the Base
table with the MLS table to provide a single object from which the user or
application queries. In addition, the Language Compatible View is constructed
using the Oracle USERENV function to filter on the user’s specified language. This

Creating MLS Objects

FDM Multi-Language Support 15-5

enables a German user to retrieve translatable results in German, while an English
user retrieves translatable results in English.

The USERENV function reads the NLS_LANG registry entry (or environment
variable if you are on UNIX) to identify the language for the session. This registry
entry is created during the installation of the application. Queries originating from a
client PC reference the PC registry entry, while queries originating from a server
(including an application server) reference either the registry entry or a UNIX
environment variable, depending upon the platform. For more information about
the USERENV function, refer to the appropriate Oracle RDMBS reference material.

For an example of how to create a Language Compatible View, refer to Creating
MLS Objects.

Creating MLS Objects
FDM enables you to create and register multi-support enabled, user-defined
database objects. The seeded FDM Metadata and Code Description entities are
already enabled for Multi-Language Support. However, if you are in a multi-lingual
environment, you may want to MLS-enable user-defined database objects that you
create.

Note: Because Language Compatible Views support SELECT,
INSERT, UPDATE and DELETE operations, and because they are
language aware, use these objects for any user or application SQL
operations. Do not perform SQL operations against Base tables or
MLS tables directly.

Note: The Language Compatible Views described in this chapter
provide updates to the attribute columns (such as DISPLAY_NAME
or DESCRIPTION), but not to the Code column itself (such as
ACCRUAL_BASIS_CD). These views are defined in such a manner
that if you need to update values for the Code column, you must
delete the appropriate records and then re-insert with the corrected
values.

Creating MLS Objects

15-6 Oracle Financial Services Installation and Configuration Guide

FDM enables you to MLS-enable any user-defined table structures.

This section outlines the required steps to create MLS-enabled data structures.
Because the most common example of creating new MLS-enabled objects is for
maintaining user-defined Code Descriptions, this section uses a Code Description
object for example purposes.

Required steps for MLS-enabled database structures:

1. Create the Base Table

2. Create the MLS table

3. Create the Language Compatible View

4. Create database triggers

5. Register the objects in FDM Administration

Each of these steps is discussed in detail, as follows:

Create the Base Table
For Code Description data structures, the Base table usually consists of only the
code column. In other situations you can have other base table attributes.

An example Base table is the OFSA_ACCRUAL_BASIS_CD table. This table has a
single column ACCRUAL_BASIS_CD.

Create the MLS Table
The MLS table contains all of the translatable columns and an MLS code value for
identifying the language. For Code Descriptions, the translatable columns usually
consist of a translatable name for the Code as well as a long description.

An example MLS table is the OFSA_ACCRUAL_BASIS_MLS table. This table has
the following structure:

MLS_CD NOT NULL VARCHAR2(3)
ACCRUAL_BASIS_CD NOT NULL NUMBER(5)
ACCRUAL_BASIS NOT NULL VARCHAR2(40)

Note: If you are operating in a multi-language environment, you
should MLS-enable all user-defined Code Description tables. With
few exceptions, Code Description tables are the only user-defined
tables storing purely translatable information.

Creating MLS Objects

FDM Multi-Language Support 15-7

DESCRIPTION VARCHAR2(255)

Create the Language Compatible View
The Language Compatible View is the object that joins the base table attributes to
the translatable values in the MLS table. The Language Compatible View filters on
the user’s specified language so that any queries return translatable values in only
that language. When all of the appropriate database triggers are in place, this view
can be used for Select, Insert, Update and Delete operations.

An example of a Language Compatible View is the OFSA_ACCRUAL_BASIS_DSC
view. This view was created using the following SQL:

PROMPT Creating View ’OFSA_ACCRUAL_BASIS_DSC’
CREATE OR REPLACE FORCE VIEW OFSA_ACCRUAL_BASIS_DSC
 (ACCRUAL_BASIS_CD
 ,ACCRUAL_BASIS
 ,DESCRIPTION)
 AS SELECT
 ACCRULBSML.ACCRUAL_BASIS_CD ACCRUAL_BASIS_CD,
 ACCRULBSML.ACCRUAL_BASIS ACCRUAL_BASIS,
 ACCRULBSML.DESCRIPTION DESCRIPTION
FROM OFSA_ACCRUAL_BASIS_MLS ACCRULBSML
 WHERE MLS_CD = USERENV(’LANG’)

When queried, this view returns only records in the designated language for that
session.

Create the Database Triggers
Database triggers support insert, update and delete operations against the
Language Compatible View, and also maintain the fully populated state of the MLS
tables.

Examples of the triggers that are required for the Accrual Basis Codes data
structures are as follows.

Base Table Trigger
This trigger maintains the fully populated state. Whenever a new Code value is
inserted into the Base table, this trigger fires to insert a record into the MLS table for
each installed language.

-- AFTER INSERT trigger on OFSA_ACCRUAL_BASIS_CD.
-- For each row INSERTed into OFSA_ACCRUAL_BASIS_CD,
-- INSERT one row into OFSA_ACCRUAL_BASIS_MLS for each

Creating MLS Objects

15-8 Oracle Financial Services Installation and Configuration Guide

-- installed language.
DECLARE
 CURSOR c1 IS
 SELECT mls_cd
 FROM ofsa_mls WHERE installed_flg=1;
BEGIN
 FOR installed_languages IN c1 LOOP
 INSERT INTO ofsa_accrual_basis_mls
 (mls_cd, accrual_basis_cd,
 accrual_basis,description)
 VALUES
 (installed_languages.mls_cd, :new.accrual_basis_cd,
 :new.accrual_basis_cd, :new.accrual_basis_cd);
 END LOOP;
END;

Language Compatible View Trigger
This trigger supports insert, update and delete operations against the Language
Compatible View. This simplifies the implementation so that all SQL operations can
be executed against the database view.

-- ***
-- ** INSTEAD-OF INSERT trigger on OFSA_ACCRUAL_BASIS_DSC (view). **
-- ***
-- For each row, instead of inserting into OFSA_ACCRUAL_BASIS_DSC,
-- insert INTO OFSA_ACCRUAL_BASIS_CD. This will fire
-- the INSERT trigger on OFSA_ACCRUAL_BASIS_CD which INSERTs
-- one row into OFSA_ACCRUAL_BASIS_MLS for each installed
-- language. THEN this trigger updates OFSA_ACCRUAL_BASIS_MLS
-- for the current language.
IF INSERTING THEN
 INSERT INTO ofsa_accrual_basis_cd
 (accrual_basis_cd)
 VALUES
 (:new.accrual_basis_cd);

 UPDATE ofsa_accrual_basis_mls
 SET description = :new.description,
 accrual_basis = :new.accrual_basis
 WHERE mls_cd = USERENV(’LANG’)
 AND accrual_basis_cd = :new.accrual_basis_cd;

-- ***
-- ** INSTEAD-OF DELETE trigger on OFSA_ACCRUAL_BASIS_DSC (view). **

Creating MLS Objects

FDM Multi-Language Support 15-9

-- ***
-- For each row, instead of deleting from OFSA_ACCRUAL_BASIS_DSC,
-- delete FROM OFSA_ACCRUAL_BASIS_CD AND this
-- table will delete cascade and remove all the entries in
-- OFSA_ACCRUAL_BASIS_MLS
ELSIF DELETING THEN
 DELETE FROM ofsa_accrual_basis_cd
 WHERE accrual_basis_cd = :old.accrual_basis_cd;

END IF;

Register Objects in FDM Administration
Once all of the required database objects have been created in the database, you
need to register them in FDM Administration. Objects registered in the FDM
Metadata are then available for user operations.

Table Classification Assignments
Assign an appropriate Table Classification to the newly registered objects: For
MLS-enabled Code Description objects, create the following Table Classification
assignments:

For more information regarding these Table Classifications, refer to Chapter 16,
"FDM Object Management". For information on how to assign a Table Classification
to an object, refer to the Oracle Financial Data Manager Administration Guide.

Description Table Mapping
You may need to map any Code columns that exist on instrument and other client
data objects to the appropriate Language Compatible View. To do so, you use the
Description Table Mapping Wizard within FDM Administration. This enables the
translated names and descriptions to display in place of the code value. For more

MLS Object Table Classification Assignment

Base Table 295 - Codes User-Defined

MLS Table 296 - MLS Descriptions User-Defined

Language Compatible
View

298 - Code Descriptions User-Defined

Seeded MLS Objects

15-10 Oracle Financial Services Installation and Configuration Guide

information regarding how to perform this mapping, refer to the Oracle Financial
Data Manager Administration Guide.

Seeded MLS Objects
All FDM tables storing translatable seeded data are MLS-enabled in Release 4.5.
There are two categories of MLS-enabled tables in FDM:

■ FDM Metadata tables

■ FDM seeded Code Description tables

Display names that are user specific names are not translated. Examples include the
names and descriptions of IDs (stored in OFSA_CATALOG_OF_IDS) as well as
individual Leaf values (except for Financial Elements).

FDM Metadata Tables
FDM supports display names and descriptions in multiple languages for all FDM
registered tables. User’s logged into the OFS applications view any FDM registered
objects in their specified language.

Display names and descriptions for FDM Table Classifications and Financial
Element Leaf values are also MLS-enabled.

Code Description Tables
A Code Description table is a table that stores a written description for a numeric or
alphanumeric code value. For example, the written description for the code value
USD is US Dollars.

All seeded Code Description tables are MLS-enabled. However, the FDM Database
Upgrade Process does not MLS-enable any user-defined Code Description tables.
Seeded MLS Objects

The following table lists the objects enabled for Multi-Language Support seeded by
the FDM Database Creation and Database Upgrade processes. With few exceptions,
all Base tables and MLS tables have a corresponding Language Compatible View:

Base Table MLS Table Language Compatible View

ASSIGNMENT_METHOD_CD ASSIGNMENT_METHOD_MLS ASSIGNMENT_METHOD_DSC

CAMPAIGN_CALC_SOURCE_CD CAMPAIGN_CALC_SOURCE_MLS CAMPAIGN_CALC_SOURCE_DSC

Seeded MLS Objects

FDM Multi-Language Support 15-11

CAMPAIGN_MEASURE_CD CAMPAIGN_MEASURE_MLS CAMPAIGN_MEASURE_DSC

COLLATERAL_DISCHARGE_TYPE_
CD

COLLATERAL_DISCHARGE_TYPE_
MLS

COLLATERAL_DISCHARGE_TYPE_
DSC

COLLATERAL_RELATIONSHIP_CD COLLATERAL_RELATIONSHIP_
MLS

COLLATERAL_RELATIONSHIP_
DSC

COLLATERAL_STATUS_CD COLLATERAL_STATUS_MLS COLLATERAL_STATUS_DSC

COLLATERAL_SUB_TYPE_CD COLLATERAL_SUB_TYPE_MLS COLLATERAL_SUB_TYPE_DSC

CONTACT_METHOD_CD CONTACT_METHOD_MLS CONTACT_METHOD_DSC

INCENTIVE_TYPE_CD INCENTIVE_TYPE_MLS INCENTIVE_TYPE_DSC

OFSA_ACCRUAL_BASIS_CD OFSA_ACCRUAL_BASIS_MLS OFSA_ACCRUAL_BASIS_DSC

OFSA_ACCUMULATION_TYPE_CD OFSA_ACCUMULATION_TYPE_
MLS

OFSA_ACCUMULATION_TYPE_
DSC

OFSA_ADJUSTABLE_TYPE_CD OFSA_ADJUSTABLE_TYPE_MLS OFSA_ADJUSTABLE_TYPE_DSC

OFSA_AMORTIZATION_TYPE_CD OFSA_AMORTIZATION_TYPE_MLS OFSA_AMORTIZATION_TYPE_DSC

OFSA_AMOUNT_TYPE_CD OFSA_AMOUNT_TYPE_MLS OFSA_AMOUNT_TYPE_DSC

OFSA_BATCH_EVENTS_STATUS_
CD

OFSA_BATCH_EVENTS_STATUS_
MLS

OFSA_BATCH_EVENTS_STATUS_
DSC

OFSA_BATCH_EVENTS_TYPE_CD OFSA_BATCH_EVENTS_TYPE_MLS OFSA_BATCH_EVENTS_TYPE_DSC

OFSA_CALC_SOURCE_CD OFSA_CALC_SOURCE_MLS OFSA_CALC_SOURCE_DSC

OFSA_CMO_TRANCHE_CD OFSA_CMO_TRANCHE_MLS OFSA_CMO_TRANCHE_DSC

OFSA_COLLATERAL_CD OFSA_COLLATERAL_MLS OFSA_COLLATERAL_DSC

OFSA_COLUMN_PROPERTY_CD OFSA_COLUMN_PROPERTY_MLS OFSA_COLUMN_PROPERTY_DSC

OFSA_COLUMN_REQUIREMENTS OFSA_COLUMN_REQUIREMENTS_
MLS

OFSA_COMMITMENT_TYPE_CD OFSA_COMMITMENT_TYPE_MLS OFSA_COMMITMENT_TYPE_DSC

OFSA_COMPONENT_TYPE_CD OFSA_COMPONENT_TYPE_MLS OFSA_COMPONENT_TYPE_DSC

OFSA_COMPOUND_BASIS_CD OFSA_COMPOUND_BASIS_MLS OFSA_COMPOUND_BASIS_DSC

OFSA_CONFORMANCE_CD OFSA_CONFORMANCE_MLS OFSA_CONFORMANCE_DSC

OFSA_CONSOLIDATION_CD OFSA_CONSOLIDATION_MLS OFSA_CONSOLIDATION_DSC

OFSA_CORRECTION_PROC_MSG_
CD

OFSA_CORRECTION_PROC_MSG_
MLS

OFSA_CORRECTION_PROC_MSG_
DSC

OFSA_CREDIT_RATING_CD OFSA_CREDIT_RATING_MLS OFSA_CREDIT_RATING_DSC

OFSA_CREDIT_STATUS_CD OFSA_CREDIT_STATUS_MLS OFSA_CREDIT_STATUS_DSC

OFSA_CURRENCIES OFSA_CURRENCY_MLS OFSA_CURRENCIES_V

OFSA_CURRENCY_STATUS_CD OFSA_CURRENCY_STATUS_MLS OFSA_CURRENCY_STATUS_DSC

Base Table MLS Table Language Compatible View

Seeded MLS Objects

15-12 Oracle Financial Services Installation and Configuration Guide

OFSA_DETAIL_ELEM_B OFSA_DETAIL_ELEM_MLS OFSA_DETAIL_ELEM

OFSA_DETAIL_RECORD_CD OFSA_DETAIL_RECORD_MLS OFSA_DETAIL_RECORD_DSC

OFSA_DIRECT_IND_CD OFSA_DIRECT_IND_MLS OFSA_DIRECT_IND_DSC

OFSA_DISCOUNT_RATE_
METHOD_CD

OFSA_DISCOUNT_RATE_
METHOD_MLS

OFSA_DISCOUNT_RATE_
METHOD_DSC

OFSA_ESTIMATION_SMOOTHING_
CD

OFSA_ESTIMATION_SMOOTHING_
MLS

OFSA_ESTIMATION_SMOOTHING_
DSC

OFSA_EXCHANGE_RATE_STATUS_
CD

OFSA_EXCHANGE_RATE_STATUS_
MLS

OFSA_EXCHANGE_RATE_STATUS_
DSC

OFSA_EXCHNG_RATE_CONV_
TYPE_CD

OFSA_EXCHNG_RATE_CONV_
TYPE_MLS

OFSA_EXCHNG_RATE_CONV_
TYPE_DSC

OFSA_EXIST_BORROWER_CD OFSA_EXIST_BORROWER_MLS OFSA_EXIST_BORROWER_DSC

OFSA_FBAL_BOOKING_CD OFSA_FBAL_BOOKING_MLS OFSA_FBAL_BOOKING_DSC

OFSA_FBAL_DIMENSION_CD OFSA_FBAL_DIMENSION_MLS OFSA_FBAL_DIMENSION_DSC

OFSA_FBAL_METHOD_CD OFSA_FBAL_METHOD_MLS OFSA_FBAL_METHOD_DSC

OFSA_FBAL_RATE_VOLUME_CD OFSA_FBAL_RATE_VOLUME_MLS OFSA_FBAL_RATE_VOLUME_DSC

OFSA_FBAL_RUNOFF_CD OFSA_FBAL_RUNOFF_MLS OFSA_FBAL_RUNOFF_DSC

OFSA_FCAST_IRC_METHOD_CD OFSA_FCAST_IRC_METHOD_MLS OFSA_FCAST_IRC_METHOD_DSC

OFSA_FCAST_XRATE_METHOD_
CD

OFSA_FCAST_XRATE_METHOD_
MLS

OFSA_FCAST_XRATE_METHOD_
DSC

OFSA_FINANCIAL_SCENARIO_CD OFSA_FINANCIAL_SCENARIO_
MLS

OFSA_FINANCIAL_SCENARIO_
DSC

OFSA_FORWARD_TYPE_CD OFSA_FORWARD_TYPE_MLS OFSA_FORWARD_TYPE_DSC

OFSA_FREQUENCY_UNIT_CD OFSA_FREQUENCY_UNIT_MLS OFSA_FREQUENCY_UNIT_DSC

OFSA_GEOGRAPHIC_LOC_CD OFSA_GEOGRAPHIC_LOC_MLS OFSA_GEOGRAPHIC_LOC_DSC

OFSA_HELD_FOR_SALE_CD OFSA_HELD_FOR_SALE_MLS OFSA_HELD_FOR_SALE_DSC

OFSA_ID_TYPE_CD OFSA_ID_TYPE_MLS OFSA_ID_TYPE_DSC

OFSA_INSTRUMENT_TYPE_CD OFSA_INSTRUMENT_TYPE_MLS OFSA_INSTRUMENT_TYPE_DSC

OFSA_INSURANCE_TYPE_CD OFSA_INSURANCE_TYPE_MLS OFSA_INSURANCE_TYPE_DSC

OFSA_INTEREST_TIMING_TYPE_
CD

OFSA_INTEREST_TIMING_TYPE_
MLS

OFSA_INTEREST_TIMING_TYPE_
DSC

OFSA_INT_COMPONENT_TYPE_
CD

OFSA_INT_COMPONENT_TYPE_
MLS

OFSA_INT_COMPONENT_TYPE_
DSC

OFSA_IRC_FORMAT_CD OFSA_IRC_FORMAT_MLS OFSA_IRC_FORMAT_DSC

OFSA_ISSUER_CD OFSA_ISSUER_MLS OFSA_ISSUER_DSC

OFSA_JOB_STATUS_CD OFSA_JOB_STATUS_MLS OFSA_JOB_STATUS_DSC

Base Table MLS Table Language Compatible View

Seeded MLS Objects

FDM Multi-Language Support 15-13

OFSA_LIEN_POSITION_CD OFSA_LIEN_POSITION_MLS OFSA_LIEN_POSITION_DSC

OFSA_LIQUIDITY_CLASS_CD OFSA_LIQUIDITY_CLASS_MLS OFSA_LIQUIDITY_CLASS_DSC

OFSA_LOAN_PROPERTY_TYPE_CD OFSA_LOAN_PROPERTY_TYPE_
MLS

OFSA_LOAN_PROPERTY_TYPE_
DSC

OFSA_MARKET_SEGMENT_CD OFSA_MARKET_SEGMENT_MLS OFSA_MARKET_SEGMENT_DSC

OFSA_MESSAGES_B OFSA_MESSAGES_MLS OFSA_MESSAGES

OFSA_MODIFY_ACTION_CD OFSA_MODIFY_ACTION_MLS OFSA_MODIFY_ACTION_DSC

OFSA_MORTGAGE_AGENCY_CD OFSA_MORTGAGE_AGENCY_MLS OFSA_MORTGAGE_AGENCY_DSC

OFSA_MSG_SEVERITY_CD OFSA_MSG_SEVERITY_MLS OFSA_MSG_SEVERITY_DSC

OFSA_MULTIPLIER_CD OFSA_MULTIPLIER_MLS OFSA_MULTIPLIER_DSC

OFSA_NET_MARGIN_CD OFSA_NET_MARGIN_MLS OFSA_NET_MARGIN_DSC

OFSA_OCCUPANCY_CD OFSA_OCCUPANCY_MLS OFSA_OCCUPANCY_DSC

OFSA_OPTION_EXERCISE_CD OFSA_OPTION_EXERCISE_MLS OFSA_OPTION_EXERCISE_DSC

OFSA_OPTION_TYPE_CD OFSA_OPTION_TYPE_MLS OFSA_OPTION_TYPE_DSC

OFSA_OVERDRAFT_PROTECTION_
CD

OFSA_OVERDRAFT_PROTECTION_
MLS

OFSA_OVERDRAFT_PROTECTION_
DSC

OFSA_OWNERSHIP_CD OFSA_OWNERSHIP_MLS OFSA_OWNERSHIP_DSC

OFSA_PATTERN_TYPE_CD OFSA_PATTERN_TYPE_MLS OFSA_PATTERN_TYPE_DSC

OFSA_PAYMENT_TYPE_CD OFSA_PAYMENT_TYPE_MLS OFSA_PAYMENT_TYPE_DSC

OFSA_PLEDGED_STATUS_CD OFSA_PLEDGED_STATUS_MLS OFSA_PLEDGED_STATUS_DSC

OFSA_PMT_PATTERN_TYPE_CD OFSA_PMT_PATTERN_TYPE_MLS OFSA_PMT_PATTERN_TYPE_DSC

OFSA_PP_CALC_METHOD_CD OFSA_PP_CALC_METHOD_MLS OFSA_PP_CALC_METHOD_DSC

OFSA_PP_DIM_TYPE_CD OFSA_PP_DIM_TYPE_MLS OFSA_PP_DIM_TYPE_DSC

OFSA_PP_QUOTE_CD OFSA_PP_QUOTE_MLS OFSA_PP_QUOTE_DSC

OFSA_PP_RATE_TERM_CD OFSA_PP_RATE_TERM_MLS OFSA_PP_RATE_TERM_DSC

OFSA_PRIVATE_MTG_INSURER_
CD

OFSA_PRIVATE_MTG_INSURER_
MLS

OFSA_PRIVATE_MTG_INSURER_
DSC

OFSA_PROCESS_FILTER_TYPE_CD OFSA_PROCESS_FILTER_TYPE_
MLS

OFSA_PROCESS_FILTER_TYPE_
DSC

OFSA_PROCESS_PARTITION_CD OFSA_PROCESS_PARTITION_MLS OFSA_PROCESS_PARTITION_DSC

OFSA_PRODUCT_TYPE_CD OFSA_PRODUCT_TYPE_MLS OFSA_PRODUCT_TYPE_DSC

OFSA_PURPOSE_CD OFSA_PURPOSE_MLS OFSA_PURPOSE_DSC

OFSA_PUT_CALL_CD OFSA_PUT_CALL_MLS OFSA_PUT_CALL_DSC

OFSA_RATE_CAP_TYPE_CD OFSA_RATE_CAP_TYPE_MLS OFSA_RATE_CAP_TYPE_DSC

Base Table MLS Table Language Compatible View

Seeded MLS Objects

15-14 Oracle Financial Services Installation and Configuration Guide

OFSA_RATE_CHG_ROUNDING_CD OFSA_RATE_CHG_ROUNDING_
MLS

OFSA_RATE_CHG_ROUNDING_
DSC

OFSA_RATE_DATA_SOURCE_CD OFSA_RATE_DATA_SOURCE_MLS OFSA_RATE_DATA_SOURCE_DSC

OFSA_RATE_FLOOR_TYPE_CD OFSA_RATE_FLOOR_TYPE_MLS OFSA_RATE_FLOOR_TYPE_DSC

OFSA_REG_D_STATUS_CD OFSA_REG_D_STATUS_MLS OFSA_REG_D_STATUS_DSC

OFSA_REPRICE_METHOD_CD OFSA_REPRICE_METHOD_MLS OFSA_REPRICE_METHOD_DSC

OFSA_RESULT_TYPE_CD OFSA_RESULT_TYPE_MLS OFSA_RESULT_TYPE_DSC

OFSA_ROLL_FACILITY_CD OFSA_ROLL_FACILITY_MLS OFSA_ROLL_FACILITY_DSC

OFSA_SERVICING_AGENT_CD OFSA_SERVICING_AGENT_MLS OFSA_SERVICING_AGENT_DSC

OFSA_SETTLEMENT_TYPE_CD OFSA_SETTLEMENT_TYPE_MLS OFSA_SETTLEMENT_TYPE_DSC

OFSA_SIC_CD OFSA_SIC_MLS OFSA_SIC_DSC

OFSA_SMOOTHING_METHOD_CD OFSA_SMOOTHING_METHOD_
MLS

OFSA_SMOOTHING_METHOD_
DSC

OFSA_SOLICIT_SOURCE_CD OFSA_SOLICIT_SOURCE_MLS OFSA_SOLICIT_SOURCE_DSC

OFSA_STOCH_RANDOM_SEQ_
TYPE_CD

OFSA_STOCH_RANDOM_SEQ_
TYPE_MLS

OFSA_STOCH_RANDOM_SEQ_
TYPE_DSC

OFSA_STRIKE_TYPE_CD OFSA_STRIKE_TYPE_MLS OFSA_STRIKE_TYPE_DSC

OFSA_STRINGS_B OFSA_STRINGS_MLS OFSA_STRINGS

OFSA_TABLES OFSA_TABLES_MLS OFSA_TABLES_V

OFSA_TABLE_CLASSIFICATION OFSA_TABLE_CLASSIFICATION_
MLS

OFSA_TABLE_CLASSIFICATION_
DSC

OFSA_TAB_COLUMNS OFSA_TAB_COLUMNS_MLS OFSA_TAB_COLUMNS_V

OFSA_TERM_TYPE_CD OFSA_TERM_TYPE_MLS OFSA_TERM_TYPE_DSC

OFSA_TM_PROC_TYPE_CD OFSA_TM_PROC_TYPE_MLS OFSA_TM_PROC_TYPE_DSC

OFSA_TP_ASSIGN_DATE_CD OFSA_TP_ASSIGN_DATE_MLS OFSA_TP_ASSIGN_DATE_DSC

OFSA_TP_CALC_METHOD_CD OFSA_TP_CALC_METHOD_MLS OFSA_TP_CALC_METHOD_DSC

OFSA_TP_CALC_MODE_CD OFSA_TP_CALC_MODE_MLS OFSA_TP_CALC_MODE_DSC

OFSA_TP_LEAF_DATA_SOURCE_
CD

OFSA_TP_LEAF_DATA_SOURCE_
MLS

OFSA_TP_LEAF_DATA_SOURCE_
DSC

OFSA_TP_OPT_COST_METHOD_
CD

OFSA_TP_OPT_COST_METHOD_
MLS

OFSA_TP_OPT_COST_METHOD_
DSC

OFSA_TP_TARGET_BAL_CD OFSA_TP_TARGET_BAL_MLS OFSA_TP_TARGET_BAL_DSC

OFSA_TRANSFORM_PROC_
SCOPE_CD

OFSA_TRANSFORM_PROC_
SCOPE_MLS

OFSA_TRANSFORM_PROC_
SCOPE_DSC

OFSA_TRANSFORM_SRC_TYPE_
CD

OFSA_TRANSFORM_SRC_TYPE_
MLS

OFSA_TRANSFORM_SRC_TYPE_
DSC

Base Table MLS Table Language Compatible View

Seeded MLS Objects

FDM Multi-Language Support 15-15

OFSA_TS_MODEL_CD OFSA_TS_MODEL_MLS OFSA_TS_MODEL_DSC

OFSA_USAGE_CD OFSA_USAGE_MLS OFSA_USAGE_DSC

OFSA_VIRTUAL_TABLES OFSA_VIRTUAL_TABLES_MLS (there is no DSC view for these tables)

QUERY_ROLE_CD QUERY_ROLE_MLS QUERY_ROLE_DSC

QUERY_SOURCE_CD QUERY_SOURCE_MLS QUERY_SOURCE_DSC

RESPONSIBLE_PARTY_CD RESPONSIBLE_PARTY_MLS RESPONSIBLE_PARTY_DSC

TRACKING_METHOD_CD TRACKING_METHOD_MLS TRACKING_METHOD_DSC

TRACKING_STATUS_CD TRACKING_STATUS_MLS TRACKING_STATUS_DSC

Base Table MLS Table Language Compatible View

Seeded MLS Objects

15-16 Oracle Financial Services Installation and Configuration Guide

FDM Object Management 16-1

16
FDM Object Management

This chapter provides information on how to manage objects within the Oracle
Financial Data Manager (FDM) environment. FDM Object management
encompasses the creation and customization of database tables and views for use
with the FDM database, as well as use with other applications in the Oracle
Financial Services Applications (OFSA) group of applications. The FDM database is
the foundation for the OFS applications. To use database objects for OFS application
operations, those objects must be identified properly within the FDM metadata.

The following, specific topics are covered in this chapter:

■ FDM Database Environment

■ Object Registration

■ Client Data Objects

■ Risk Manager Results Tables

■ Transformation Output Tables

■ Temporary Objects

■ Message and Audit Objects

■ Packages, Procedures, and Java Classes

■ Views and Triggers

■ Seeded Data Tables and Ranges

FDM Database Environment
The FDM database environment encompasses all of the database tables and views
registered within the FDM Metadata, as well as supporting objects such as triggers,

FDM Database Environment

16-2 Oracle Financial Services Installation and Configuration Guide

constraints, indexes and public synonyms. This environment also includes objects
providing security, such as users and roles.

FDM supports customization of this environment. However, objects with the
OFSA_ prefix are categorized as FDM Reserved. FDM Reserved objects support the
internal operations of the OFS applications.With few exceptions, these objects
cannot be customized or modified in any manner. The exceptions to this rule
include modifying FDM Reserved Objects for the purpose of registering a new Leaf
Column.

In general, objects without the OFSA_ prefix are categorized as Client Data Objects.
Client Data Objects are completely customizable. You can also create your own
objects for use with FDM. Refer to Client Data Objects for more information.

The process of providing information about objects for the FDM Metadata is
entitled Registration. The FDM Database Creation and Database Upgrade processes
seed registration information for all FDM Reserved objects. The Registration process
within the FDM Administration application is only used for registering client data
objects.

Budgeting & Planning in the FDM Environment
Oracle Budgeting & Planning integrates with data from the Financial Data Manager
database. However, it employs a different technology stack from FDM. Budgeting &
Planning is runs in an Oracle Express, and Oracle Financial Analyzer environment
instead of the Oracle RDBMS environment in which FDM exists. The concepts
discussed in this chapter relating to object management pertain only to the Oracle
RDBMS objects, not to Oracle Express objects.

Refer to Chapter 8, "Budgeting & Planning Server-Side Installation and Setup" and
Chapter 9, "Budgeting & Planning Database Upgrade Process" for information on
how to upgrade and maintain your Budgeting & Planning database.

Caution: Dropping, unregistering, or modifying FDM Reserved
objects causes problems with the operation of OFS applications.
This includes FDM Reserved tables and views, as well as the
triggers, constraints, indexes, and public synonyms that support
them.

Object Registration

FDM Object Management 16-3

Oracle Market Manager in the FDM Environment
Market Manager is part of the Financial Data Manager database. All Market
Manager objects are registered within the FDM Metadata. However, Market
Manager does not employ the FDM Security Framework. In addition, Market
Manager does not access or use the FDM Metadata.

Financial Data Manager is therefore aware of Market Manager database objects
(because they are registered in the FDM Metadata), but the converse (Market
Manager being aware of FDM) is not true. The Object Management information
presented in this chapter is relevant for an Market Manager implementation only if
FDM is implemented in conjunction with it. If you are running Market Manager in
Standalone mode, none of the Object Management information present in this
chapter has any bearing to your implementation.

Object Registration
FDM is an open environment supporting the use of customized tables and views.
The process of identifying these customized objects in the FDM metadata is called
Object Registration. The Object Registration process encompasses providing all of
the metadata that FDM requires to use an object. FDM enables you to register any
table or view owned by the FDM Schema Owner. In addition, you can register
tables from other schemas, including schemas in another database instance.

Note: The Oracle Market Manager application is not included on
the OFSA 4.5 CD. However, Market Manager Release 4.0 is
compatible with the FDM 4.5 database (with the Market Manager
database objects installed).

Object Registration

16-4 Oracle Financial Services Installation and Configuration Guide

The following is a pictorial representation of the Object Registration process:

The FDM metadata categories are:

■ Object Identification

■ Column Properties

■ Table Classifications

■ Table Properties

■ Description Table Mapping

Each of these categories is described briefly. For detailed information regarding the
Object Registration process within the FDM Administration application, refer to the
Oracle Financial Data Manager Administration Guide.

Object Identification
Object identification is the first step of the Object Registration process. FDM stores
identification information about an object in the following tables:

Note: (Note that Table Classifications are composed of Table
Properties. You do not directly assign Table Properties to an Object,
rather, you assign Table Classifications.

Identify Object

Define Column
Detail

Review Report

Registering an Object

Select
Classifications

Validate
Classifications

Review Report

Classifying the Object Mapping Code
Descriptions

Add New Mapping

Add New
Assignments

Assigning Column
Properties

Object Registration

FDM Object Management 16-5

■ OFSA_TABLES

■ OFSA_TABLES_MLS

■ OFSA_TAB_COLUMNS

■ OFSA_TAB_COLUMNS_MLS

Identifying Objects from Other Schemas
When registering a table owned by a schema other than the FDM Schema Owner,
FDM requires the existence of a view owned by the FDM Schema Owner to point to
the table. The FDM Administration application then registers this view, rather than
the actual table, in the FDM Metadata. If the table exists within the same database
instance as the FDM Schema Owner, then the FDM Administration application
automatically creates the view for that table. If the table exists in a separate database
instance, you must create the view manually. The view then references the table
using a database link to the other instance. Again, when registering a table from
another database schema or instance, it is the view that is actually registered within
the FDM Metadata, not the physical table.

Column Properties
Column Properties provide additional information about the nature of columns.
These properties define how columns are used by the OFS applications. Column
Property assignments for each column are stored in OFSA_COLUMN_
PROPERTIES.

The FDM Object Registration Wizard automatically populates default Column
Property Assignments for any FDM Reserved Columns, except for the Processing
Key Column Property. You, as the administrator, are responsible for assigning any
Column Property assignments for user defined columns.

For detailed information regarding FDM Column Properties, refer to the Oracle
Financial Data Manager Administration Guide.

Note: The Processing Key Column Property is required for the
columns that compose the primary or unique key for each
registered object.

Object Registration

16-6 Oracle Financial Services Installation and Configuration Guide

Table Classifications
Table Classifications provide a means to designate how tables and views are used
within the OFS Applications. Each Table Classification identifies a specific purpose
for which an assigned table or view is allowed to be used.

Some Table Classifications have requirements that must be satisfied in order for an
object to be assigned to the classification. These requirements are designated by
Table Properties associated to the Table Classifications. These Table Properties are
either specific column name requirements or logic validations.

Table Classification assignments are stored in OFSA_TABLE_CLASS_
ASSIGNMENT.

Table Classifications are categorized as follows:

■ User Assignable

■ Reserved

■ Dynamic

User Assignable Table Classifications
User Assignable Table Classifications are those that can be assigned by the
administrator to user-defined and client data objects, including the FDM Instrument
tables installed with the database. These Table Classifications identify processing
and reporting functions for the OFS applications. Some of these Table
Classifications have requirements that must be met in order for the classification to
be assigned to a table or view.

All User Assignable Table Classifications are available for assignment within the
FDM Administration Table Classification Assignment Wizard. The following table
lists the User Assignable Table Classifications:

Note: FDM requires that all registered Client Data objects be
assigned at least one Table Classification. FDM Reserved Objects
are automatically assigned Table Classifications by the Database
Upgrade and Database Creation processes.

Object Registration

FDM Object Management 16-7

Validating User Assignable Table Classifications

FDM requires specific table structures, column names and column characteristics
for OFS application operations. These structures and requirements are embodied by
the User Assignable Table Classifications.

When you assign a Table Classification to a registered table or view in FDM
Administration, the application validates that all requirements for that Table
Classification are met. If all requirements are not met, the Table Classification
assignment is rejected. You must then modify the object appropriately to meet the
requirements for that particular Table Classification.

Each Table Classification comprises individual Table Properties that define the
requirements for that classification. Table Properties are two distinct types: those

 Code Table Classification Name

20 Instrument

100 Portfolio

200 TP Cash Flow

210 TP Non-Cash Flow

295 Codes User-Defined

296 MLS Descriptions User Defined

298 Code Descriptions User Defined

300 Transaction Profitability

310 Instrument Profitability

320 User Defined

330 Data Correction Processing

360 RM Standard

370 TP Option Costing

Note: For a detailed list of columns and logic requirements for
each of the Table Classifications, refer to FDM Table Properties.

Object Registration

16-8 Oracle Financial Services Installation and Configuration Guide

encompassing specific column requirements and those encompassing logic
requirements via stored procedures.

Column Requirements
FDM implements column requirements by reserving specific column names. In
order for an object to be assigned to a particular Table Classification, all of the FDM
reserved column names required by that classification must exist on the object. In
addition, the columns on the object must possess the required characteristics of
those reserved column names. For example, the MATURITY_DATE column is
required by the RM Standard Table Classification. In order to be assigned to this
classification, the MATURITY_DATE column must exist on the object and it must be
defined as data type DATE.

The FDM Table Classification Assignment Wizard identifies any missing columns
for each Table Classification validation. If all columns are present on an object, but
the object still fails the classification assignment, then one or more of the columns
does not match the characteristic requirements. All column characteristics are
specified in the OFSA_COLUMN_REQUIREMENTS table.

The OFSA_COLUMN_REQUIREMENTS table stores all of the required attributes
for FDM reserved column names. Although it also stores attributes for any user
defined Leaf Columns or any user-defined Portfolio columns, the Table
Classification validation process accesses only this table for FDM Reserved columns
when validating whether or not a column passes the requirements test.

FDM enables you to edit some of the fields in OFSA_COLUMN_REQUIREMENTS
for the FDM Reserved columns (FDM Reserved columns are identified by
PROTECTED_FLG=1). The User Edit? column designates whether or not the value
for the column attribute can be changed. Columns marked with a User Edit? = NO
are reserved by FDM and cannot be changed. You can always change any of the
columns for user-defined entries in this table (identified by PROTECTED_FLG=0).

Note: You are not allowed to delete any records from OFSA_
COLUMN_REQUIREMENTS where PROTECTED_FLG=1. Such
columns are reserved by FDM for OFS application operations. You
are allowed to insert new records into this table with PROTECTED_
FLG=0 when creating new Portfolio columns.

Object Registration

FDM Object Management 16-9

Use the following matrix to identify what to do when you fail a Table Classification
validation for an object due to a column requirements discrepancy:

Column Name Description User Edit?

COLUMN_NAME Identifies the column for which
requirements exist.

NO

OFSA_DATA_TYPE_CD Designates the FDM Data Type
requirement for the column. FDM Data
Type Codes are stored in OFSA_DATA_
TYPE_DSC

NO

DATA_LENGTH Designates the required Oracle data length YES

DATA_PRECISION Designates the required Oracle data
precision.

YES

DATA_SCALE Designates the required Oracle data scale YES

DATA_TYPE Designates the required Oracle data type. NO

NULLABLE Indicates if the column is nullable. NO

DBF_NAME Designates the name for the column when
exported into a DBF.

YES

PROTECTED_FLG A 1 indicates that the column_name is
FDM Reserved. A 0 indicates that the
column is user-defined.

NO

Type of Column Failure Condition Resolution

FDM Reserved Data Length, Data Precision,
Data Scale

Choice: Alter the column to
match the requirement, or alter
the requirement to match the
column. Whichever is
appropriate.

FDM Reserved OFSA Data Type CD, Data Type, Alter the column to match the
requirement.

User Defined Any requirement Choice: Alter the column to
match the requirement, or alter
the requirement to match the
column. Whichever is
appropriate.

Object Registration

16-10 Oracle Financial Services Installation and Configuration Guide

Stored Procedure Requirements
Table Properties also validate specific logic tests. For example, the Instrument
Profitability Table Classification requires an object with all of the registered Leaf
Columns of type Both Instrument and Ledger. This requirement is implemented in
FDM using a stored procedure validation. When you assign the Instrument
Profitability Table Classification to an object, the Table Classification Assignment
Wizard executes this stored procedure. If the stored procedure returns with a True
result, the object meets the requirements and can be assigned to the classification. If
the stored procedure returns with a False result, the Table Classification assignment
is rejected.

The FDM Table Classification Assignment Wizard indicates whether or not an
object passed all of the stored procedure validations for a Table Classification
assignment. However, in order to identify which specific stored procedure
requirement was not met, you must execute a procedure directly in SQL*Plus.

Running the Validation Check
FDM Administration validates that an object meets the table classification
requirements during assignment. However, the message window that appears in
FDM Administration after a Table Classification assignment does not display all of
the detailed information as to why the object failed. The message window only
identifies if a column is missing from the object or that one of the stored procedures
failed.

To identify the specific reasons why an object failed a Table Classification
assignment, run the validation procedure in SQL*Plus as follows:

<SQL> set serveroutput on
<SQL> execute ofsa_app_utils.check_table_class_reg(object_name, table_
classification_cd);

The object_name parameter is the name of the object to which you are assigning the
Table Classification. The table_classification_cd parameter is the code number of the

Note: If you modify the Data Length, Data Precision or Data Scale
requirements for a column, all objects with that column must be
modified to meet the new requirement. To do this, use the Utility
script for altering Balance column definitions described in
Chapter 21, "FDM Utilities". Do NOT modify the column
requirement in OFSA_COLUMN_REQUIREMENTS unless you
intend to modify all objects with that column.

Object Registration

FDM Object Management 16-11

Table Classification being validated for that object. For example, if you are assigning
the Instrument Profitability classification to the DEPOSITS table, you would execute
the following statement in SQL*Plus:

<SQL> set serveroutput on
execute ofsa_app_utils.check_table_class_reg(’DEPOSITS’,310);

The stored procedure then returns messages indicating why the classification
assignment failed.

Table Classification Validation Messages
The following messages identify the different reasons for Table Classification
assignment failure:

Note: The instructions for manually executing the stored
procedure validations are also included on the Wizard report page
that appears after all Table Classification assignments have been
validated.

Table Classification Message Description

Column did not meet detail requirements The column is registered for the object, but does not have
the correct column attributes as specified in OFSA_
COLUMN_REQUIREMENTS. Required attributes
include:
FDM Data Type (OFSA)
Data Type (Oracle)
Data Length
Data Scale
Precision

Missing column The identified column is missing from the object

Invalid Join or Union View FDM does not allow union or join views to be classified.

Invalid View The view must be a valid view in the database.

No valid unique index found The object does not meet the unique index requirements
for the Table Classification.

Processing Key Column Properties do not match unique
index

The columns in the unique index are not designated with
the Processing Key Column Property. Assign this Column
Property to the appropriate columns within FDM
Administration.

Invalid Table The table must be a valid object in the database.

Data Type must be NUMBER and FDM Data Type must
be LEAF

Leaf Columns must be of Oracle Data Type NUMBER and
be registered as FDM Data Type LEAF.

Object Registration

16-12 Oracle Financial Services Installation and Configuration Guide

User Assignable Table Classification Descriptions and Requirements

All of the User Assignable Table Classifications are described with their
requirements, as follows.

20 - Instrument
The Instrument classification identifies objects storing client account data. This
Table Classification is a super-type grouping client data tables for reporting
purposes. There are no requirements for this classification. In addition, because it is
a super-type, it is automatically assigned to any table or view belonging to the
following Table Classifications:

200 TP Cash Flow

210 TP Non-Cash Flow

300 Transaction Profitability

310 Instrument Profitability

330 Data Correction Processing

360 RM Standard

370 TP Option Costing

100 - Portfolio
The Portfolio classification identifies those objects that have a set of columns in
common. Objects identified as ’Portfolio’ are available for use with any Portfolio
compatible OFSA ID. This enables users to create IDs that are not object specific.
Rather, they are generic IDs where the object to be run against is provided at
runtime. Assigning a table or view to the Portfolio classification enables the object
to appear in the list of values for ’Portfolio tables’ within the following OFS
applications:

■ Balance and Control

■ Performance Analyzer

■ Portfolio Analyzer

■ Risk Manager

■ Transfer Pricing

The Portfolio classification is the only Table Classification that is editable and
controllable by the administrator. Administrators can add or subtract columns from
the requirement list of this classification by specifying information in the

Object Registration

FDM Object Management 16-13

appropriate FDM metadata tables. Refer to Modifying the Portfolio Table
Classification for information on how to modify the columns required for the
Portfolio classification.

295 - Codes User-Defined
The ’Codes User Defined’ classification identifies the object as a base table for
storing user-defined code values. Code value base tables are those tables that store
the list of allowable code values and do not store any translatable descriptions. The
administrator assigns this Table Classification in those cases where they have added
a new code column to the Financial Data Model. For example, a column
’TRANSACTION_CD’ might designate numeric values for which there are
translatable descriptions. The table storing the list of allowable Transaction codes is
identified as Table Classification 295.

The tables supporting user-defined Code Columns can be multi-language enabled,
but are not required to be. For a multi-language situation, there is a base table
storing the allowable code values (295), an MLS table storing the translatable
descriptions (296), and a language compatible view for displaying codes and their
descriptions for reporting and viewing purposes (298). If the Code Descriptions are
not multi-language enabled, then the table storing the both the base code values
and the code descriptions should be classified as a ’298 - Code Descriptions User
Defined’, instead of ’295 - Codes User Defined’ or ’296 MLS Descriptions User
Defined’.

In general, the Codes classification (295) is assigned to tables, not views. The
exception to this rule is when the table storing the list of allowable code values is
physically located in another schema. In this situation, assign the Codes
classification to the view registered in the FDM schema.

296 - MLS Descriptions User Defined
The MLS (Multi-Language Support) Descriptions classification identifies the object
as storing translatable descriptions for a code column. The administrator assigns
this Table Classification in those cases where they have added a new code column
to the Financial Data Model. For example, a column ’TRANSACTION_CD’ might
designate numeric values for which there are translatable descriptions. The table
storing the list of translatable descriptions for Transaction codes is identified as
Table Classification 196.

Only assign this classification to the table storing translatable descriptions in a
multi-language environment. The tables supporting user-defined Code Columns
can be multi-language enabled but are not required to be. For a multi-language
situation, there is a base table storing the allowable code values (295), an MLS table

Object Registration

16-14 Oracle Financial Services Installation and Configuration Guide

storing the translatable descriptions (296), and a language compatible view for
displaying codes and their descriptions for reporting and viewing purposes (298). If
the Code Descriptions are not multi-language enabled, then the table storing the
both the base code values and the code descriptions should be classified as a ’298 -
Code Descriptions User Defined’, instead of ’295 - Codes User Defined’ or ’296 MLS
Descriptions User Defined’.

In general, the MLS Descriptions classification (296) is assigned to tables, not views.
The exception to this rule is when the table storing the list of allowable code values
is physically located in another schema. In this situation, assign the MLS
Descriptions classification to the view registered in the FDM schema.

298 - Code Descriptions User Defined
This classification identifies the view or table used for retrieving descriptions for a
code column.

In a multi-language environment, this is separate from the table used to store the
descriptions. In this situation, the object for displaying the code descriptions is
actually a ’Language Compatible Views’. These views are dynamic in that they
display descriptions only in the user’s selected language, even when descriptions in
multiple languages are stored in the MLS Description table.

In a single language environment, this classification is assigned to the table that
stores both the code values and the code descriptions.

The tables supporting user-defined Code Columns can be multi-language enabled,
but are not required to be. For a multi-language situation, there is a base table
storing the allowable code values (295), an MLS table storing the translatable
descriptions (296), and a language compatible view for displaying codes and their
descriptions for reporting and viewing purposes (298). If the Code Descriptions are
not multi-language enabled, then the table storing the both the base code values
and the code descriptions should be classified as a ’298 - Code Descriptions User
Defined’, instead of ’295 - Codes User Defined’ or ’296 MLS Descriptions User
Defined’.

The administrator assigns this Table Classification in those cases where they have
added a new code column to the Financial Data Model. For example, a column
’TRANSACTION_CD’ might designate numeric values for which there are
translatable descriptions. The view for displaying translatable descriptions for
Transaction codes would be assigned Table Classification 298.

Object Registration

FDM Object Management 16-15

200 - TP Cash Flow
The TP Cash Flow classification identifies objects for Transfer Pricing Cash Flow
processing. Any table or view assigned to this Table Classification appears in the
Transfer Pricing Process ID table list.

In order for a table or view to be classified for use with Transfer Pricing Cash Flow
processing, the following Table Property requirements must be satisfied:

■ Basic Instrument Requirements

■ Cash Flow Proc. Requirements

■ Cash Flow Edit Requirements

■ Multi-Currency

■ TP Basic Requirements

■ Validate Instrument Leaves

■ Validate Instrument Key

For detailed information about these Table Classification requirements, refer to
FDM Table Properties.

210 - TP Non-Cash Flow
The TP Non-Cash Flow classification identifies objects for Transfer Pricing
Non-Cash Flow processing. Any table or view assigned to this Table Classification
appears in the Transfer Pricing Process ID table list.

In order for a table or view to be classified for use with Transfer Pricing Cash Flow
processing, the following Table Property requirements must be satisfied:

■ Basic Instrument Requirements

■ Multi-Currency

■ TP Basic Requirements

■ Validate Instrument Leaves

■ Validate Instrument Key

For detailed information about these Table Classification requirements, refer to
FDM Table Properties.

Object Registration

16-16 Oracle Financial Services Installation and Configuration Guide

300 - Transaction Profitability
The Transaction Profitability classification identifies objects for Performance
Analyzer Allocation processing. Transaction Profitability objects store transaction
data relating to accounts in Instrument Profitability objects. There is a many to one
relationship between data in the Transaction Profitability objects to data in the
Instrument Profitability objects. Any table or view assigned to this Table
Classification appears in the Performance Analyzer Allocation ID table list.

In order for a table or view to be classified as a Transaction object for use with
Allocation processing, the following Table Property requirements must be satisfied:

■ Basic Instrument Requirements

■ Multi-Currency

■ Validate Instrument Leaves

■ Validate Transaction Key

For detailed information about these Table Classification requirements, refer to
FDM Table Properties.

310 - Instrument Profitability
The Instrument Profitability classification identifies objects for Performance
Analyzer Allocation processing. Instrument Profitability objects store customer
account data (for example, deposits, mortgages, investments). Any table or view
assigned to this Table Classification appears in the Performance Analyzer
Allocation ID table list.

In order for a table or view to be classified as an Instrument Profitability object for
use with Allocation processing, the following Table Property requirements must be
satisfied:

■ Basic Instrument Requirements

■ Multi-Currency

■ Validate Instrument Leaves

■ Validate Instrument Key

For detailed information about these Table Classification requirements, refer to
FDM Table Properties.

Object Registration

FDM Object Management 16-17

320 - User Defined
The User-Defined classification has no requirements. This classification is only for
grouping tables or views created by the administrator that are not assigned one of
the other Table Classifications.

330 - Data Correction Processing
The Data Correction Processing classification identifies objects for use with Balance
and Control Data Correction Processing. Tables or views assigned to this Table
Classification appear in the Data Correction Processing ID table list.

In order for a table or view to be classified for use with Data Correction Processing,
the following Table Property requirements must be satisfied:

■ Validate Correction Key

For detailed information about this Table Classification requirements, refer toFDM
Table Properties.

360 - RM Standard
The RM Standard classification identifies objects for Risk Manager processing. Any
table or view assigned to this Table Classification appears in the Risk Manager
Process ID table list.

In order for a table or view to be classified for use with Risk Manager processing,
the following Table Property requirements must be satisfied:

■ Basic Instrument Requirements

■ Multi-Currency

■ Cash Flow Proc. Requirements

■ Validate Instrument Leaves

■ Validate Instrument Key

For detailed information about these Table Classification requirements, refer to
FDM Table Properties.

370 - TP Option Costing
The TP Option Costing classification identifies objects for Transfer Pricing Option
Costing processing. Any table or view assigned to this Table Classification appears
in the Transfer Pricing Process ID table list.

Object Registration

16-18 Oracle Financial Services Installation and Configuration Guide

In order for a table or view to be classified for use with Transfer Pricing Option
Costing processing, the following Table Property requirements must be satisfied:

■ Basic Instrument Requirements

■ Multi-Currency

■ TP Basic Requirements

■ TP Option Costing Requirements

■ Validate Instrument Leaves

■ Validate Instrument Key

For detailed information about these Table Classification requirements, refer to
FDM Table Properties.

Modifying the Portfolio Table Classification

As stated, the only modifiable Table Classification is the Portfolio classification. This
classification enables you to create IDs within the OFS applications that apply to the
virtual Portfolio instrument object, rather than a specific database object. These IDs
are then generic and can be applied against any object assigned to the Portfolio
Table Classification.

The list of fields designated for the Portfolio classification is completely
customizable. The FDM database creation process provides a seeded list of Portfolio
fields. If you are migrating from OFSA Releases 3.5 or 4.0, the Database Upgrade
Process converts all of the fields designated as Portfolio in your existing database to
the new Portfolio Table Classification. You are allowed to add and remove fields
from this list as needed.

The Portfolio Table Classification is composed of a single Table Property, also
named Portfolio. The list of fields for this property is specified in the OFSA_
PROPERTY_COLUMNS table where the table_property_cd = 40.

To identify a user defined column as a new Portfolio column, complete the
following:

1. Column Requirements Insert

Create a row in the OFSA_COLUMN_REQUIREMENTS table specifying the
required attributes for the Portfolio field. The OFS applications reference these
attributes for any occurrence of the Portfolio column in a Portfolio ID.

Object Registration

FDM Object Management 16-19

2. Table Property Insert

Insert a row into OFSA_PROPERTY_COLUMNS as follows:

INSERT INTO ofsa_property_columns
VALUES (40, :column_name, 0);

Column Name Description

COLUMN_NAME Identifies the column name for the new
Portfolio column

OFSA_DATA_TYPE_CD Designates the FDM Data Type
requirement for the column. FDM Data
Type Codes are listed in OFSA_DATA_
TYPE_DSC

DATA_LENGTH Designates the Oracle data length for the
Portfolio column.

DATA_PRECISION Designates the Oracle data precision for the
Portfolio column.

DATA_SCALE Designates the Oracle data scale for the
Portfolio column.

DATA_TYPE Designates the Oracle data type for the
Portfolio column.

NULLABLE Indicates if the column is nullable.

DBF_NAME Designates the name for the column when
exported into a DBF.

PROTECTED_FLG A 0 indicates that the column is
user-defined. A 1 indicates that the
column_name is FDM Reserved. Only
insert values with 0 to designate
user-defined fields.

Object Registration

16-20 Oracle Financial Services Installation and Configuration Guide

FDM Reserved Table Classifications
Reserved Table Classifications are assigned to tables and views by the FDM
Database Creation and Database Upgrade processes. These Table Classifications are
used internally by FDM processes and other OFSA processes. Reserved Table
Classifications are not available for assignment by administrators.

The following Table Classifications are designated as FDM reserved:

Caution: When modifying the list of Portfolio fields in OFSA_
PROPERTY_COLUMNS, you must insert or delete only records for
table_property_cd=40. If you delete any records for other Table
Property Codes, you invalidate the Table Classification Assignment
process.

 Code Table Classification Name

10 OFSA ID

30 Detail Leaf Information

40 Leaf Results

50 Ledger Stat

60 Customer Householding

70 FDM Reserved

80 Customer Householding Processing

110 Processing Audit

130 Results for Reporting

140 RM Detail Results

150 RM Leaf Results

160 RM Results Template

165 RM EAR Template

180 RM VAR Views

Object Registration

FDM Object Management 16-21

182 RM VAR Results

185 RM EAR Results

190 FDM System

195 Codes (FDM Reserved)

196 MLS Descriptions (FDM Reserved)

197 Code Descriptions (FDM Reserved)

198 Code Descriptions (User Editable)

220 Transformed Ledger Stat

230 Transformed RM Cash Flow

240 Transformed RM GAP

250 Transformed Tree Rollup

260 Trans Ledger Stat Template

270 Trans RM Cash Flow Template

280 Trans RM GAP Template

290 Trans Rollup Template

350 Primary Key All Leaves

351 All B Leaves

352 All L Leaves

420 Transformed RM Result Detail

430 Transformed RM Cons Cash Flow

440 Transformed RM Cons GAP

450 Reporting System Tables

460 Reporting Rates

470 Business Process Audit

480 Data Verification View/Update

490 Collateral Objects

 Code Table Classification Name

Object Registration

16-22 Oracle Financial Services Installation and Configuration Guide

Dynamic Table Classifications
Dynamic Table Classifications are assigned to output tables created dynamically as
a result of Risk Manager or Transformation processing. Because these Table
Classifications are assigned automatically by Risk Manager and Transformation
Processing, they are not assignable by users in the Table Classification Assignment
Wizard in the FDM Administration application. However, because administrators
need to be able to grant privileges for dynamic objects, these Table Classifications
are available for grant assignments in the FDM Dynamic Table Classification
Privileges tab within the FDM Administration application.

The following Table Classifications are designated as Dynamic:

For information on how to assign Dynamic Object Privileges, refer to the Oracle
Financial Data Manager Administration Guide.

FDM Table Properties
Table properties identify required characteristics for table classifications. In order
for an object to receive a particular classification, it must meet the requirements
specified by the table properties (if any) of that classification.

There are two types of table properties: column names and stored procedures.

Column Name Table Properties
Column name table properties consist of required column names, as well as
required column characteristics, for table classifications. In order for an object to be
assigned to a particular table classification, the object must meet all of the require-
ments for column names and column characteristics of the table properties of that
table classification. For example, several classifications require the existence of an

 Code Table Classification Name

140 RM Detail Results

185 RM EAR Results

220 Transformed Ledger

230 Transformed RM Cash Flow

240 Transformed RM GAP

250 Transformed Tree Rollup

Object Registration

FDM Object Management 16-23

AS_OF_DATE column, which is of data type DATE on the table or view, in order for
the object to be assigned that classification.

These column requirements are validated whenever a table or view is assigned to a
new table classification within the Table Classification Assignment Wizard of FDM
Administration.

The following table properties identify column name requirements:

10 - Basic Instrument Requirements This table property identifies a set of columns that
are required by the financial instrument processing functions, such as Allocation
processing, Risk Manager processing, and Transfer Pricing processing. The required
columns are:

ID_NUMBER

IDENTITY_CODE

AS_OF_DATE

IDENTITY_CODE_CHG

40 - Portfolio Requirements This table property identifies a set of common columns for
objects assigned to the Portfolio table classification. The Portfolio table classifica-
tion enables users to create OFSA IDs that are generic and not specific to a particu-
lar object. Such IDs are then usable with any object having all of the fields specified
by the Portfolio table property.

The FDM database creation process provides a default list of columns for the Portfo-
lio table property. The administrator can add or remove columns from this list. The
Portfolio table property is the only one modifiable by the administrator. The proce-

Code Description

10 Basic Instrument Requirements

40 Portfolio Requirements

50 Cash Flow Proc. Requirements

60 Cash Flow Edit Requirements

80 Multi-Currency Requirements

100 TP Option Costing Requirements

110 TP Basic Requirements

Object Registration

16-24 Oracle Financial Services Installation and Configuration Guide

dure for adding and removing Portfolio columns is detailed in the description of the
Portfolio Table Classification.

The following is the default list of Portfolio fields provided by the FDM database
creation process:

ACCOUNT_OFFICER

ACCRUAL_BASIS_CD

ADJUSTABLE_TYPE_CD

AS_OF_DATE

AVG_BOOK_BAL

AVG_NET_BOOK_BAL_C

BANK_CODE

BRANCH_CODE

COMMON_COA_ID

COMPOUND_BASIS_CD

CUR_BOOK_BAL

CUR_GROSS_RATE

CUR_NET_BOOK_BAL_C

CUR_NET_PAR_BAL_C

CUR_NET_RATE

CUR_PAR_BAL

CUR_TP_PER_ADB

CUR_YIELD

DATA_SOURCE

DEFERRED_ORG_BAL

GEOGRAPHIC_LOC_CD

GL_ACCOUNT_ID

IDENTITY_CODE

IDENTITY_CODE_CHG

Object Registration

FDM Object Management 16-25

ID_NUMBER

INSTRUMENT_TYPE_CD

INTEREST_RATE_CD

ISO_CURRENCY_CD

LAST_REPRICE_DATE

LAST_UPDATE_DATE_C

MARGIN

MARGIN_GROSS

MARGIN_T_RATE

MARKET_SEGMENT_CD

MARKET_VALUE_C

MATCHED_SPREAD_C

MATURITY_DATE

NEG_AMRT_AMT

NEG_AMRT_EQ_DATE

NEG_AMRT_EQ_FREQ

NEG_AMRT_EQ_MULT

NEG_AMRT_LIMIT

NET_MARGIN_CD

NEXT_PAYMENT_DATE

NEXT_REPRICE_DATE

ORG_BOOK_BAL

ORG_NET_BOOK_BAL_C

ORG_NET_PAR_BAL_C

ORG_PAR_BAL

ORG_RATE

ORG_UNIT_ID

ORIGINATION_DATE

Object Registration

16-26 Oracle Financial Services Installation and Configuration Guide

PERCENT_SOLD

PMT_ADJUST_DATE

PMT_CHG_FREQ

PMT_CHG_FREQ_MULT

PMT_DECR_CYCLE

PMT_DECR_LIFE

PMT_FREQ

PMT_FREQ_MULT

PMT_INCR_CYCLE

PMT_INCR_LIFE

PRIOR_TP_PER_ADB

PRODUCT_TYPE_CD

RATE_CAP_LIFE

RATE_CHG_MIN

RATE_CHG_RND_CD

RATE_CHG_RND_FAC

RATE_DECR_YEAR

RATE_FLOOR_LIFE

RATE_INCR_YEAR

RECORD_COUNT

REMAIN_TERM_C

REMAIN_TERM_MULT_C

REPRICE_FREQ

REPRICE_FREQ_MULT

SIC_CD

TAX_EXEMPT_PCT

TEASER_END_DATE

TRANSFER_RATE

Object Registration

FDM Object Management 16-27

TRAN_RATE_REM_TERM

T_RATE_INT_RATE_CD

50 - Cash Flow Proc. Requirements This table property identifies the columns required
for cash flow processing operations in Risk Manager and Transfer Pricing. This
property is required for the following table classifications:

The Cash Flow Processing Requirements table property is composed of the follow-
ing fields:

ACCRUAL_BASIS_CD

ADJUSTABLE_TYPE_CD

AMRT_TERM

AMRT_TERM_MULT

AMRT_TYPE_CD

AS_OF_DATE

COMPOUND_BASIS_CD

CUR_BOOK_BAL

CUR_GROSS_RATE

CUR_NET_RATE

CUR_PAR_BAL

CUR_PAYMENT

CUR_TP_PER_ADB

DEFERRED_ORG_BAL

IDENTITY_CODE

ID_NUMBER

Code Description

200 TP Cash Flow

360 RM Standard

370 TP Option Costing

Object Registration

16-28 Oracle Financial Services Installation and Configuration Guide

INSTRUMENT_TYPE_CD

INTEREST_RATE_CD

INT_TYPE

ISSUE_DATE

LAST_PAYMENT_DATE

LAST_REPRICE_DATE

LRD_BALANCE

MARGIN

MARGIN_GROSS

MARGIN_T_RATE

MARKET_VALUE_C

MATCHED_SPREAD_C

MATURITY_DATE

NEG_AMRT_AMT

NEG_AMRT_EQ_DATE

NEG_AMRT_EQ_FREQ

NEG_AMRT_LIMIT

NET_MARGIN_CD

NEXT_PAYMENT_DATE

NEXT_REPRICE_DATE

ORG_PAR_BAL

ORG_PAYMENT_AMT

ORG_TERM

ORG_TERM_MULT

ORIGINATION_DATE

PERCENT_SOLD

PMT_ADJUST_DATE

PMT_CHG_FREQ

Object Registration

FDM Object Management 16-29

PMT_CHG_FREQ_MULT

PMT_DECR_CYCLE

PMT_DECR_LIFE

PMT_FREQ

PMT_FREQ_MULT

PMT_INCR_CYCLE

PMT_INCR_LIFE

PRIOR_TP_PER_ADB

RATE_CAP_LIFE

RATE_CHG_MIN

RATE_CHG_RND_CD

RATE_CHG_RND_FAC

RATE_DECR_CYCLE

RATE_FLOOR_LIFE

RATE_INCR_CYCLE

RATE_SET_LAG

RATE_SET_LAG_MULT

REMAIN_NO_PMTS_C

REPRICE_FREQ

REPRICE_FREQ_MULT

TEASER_END_DATE

TRANSFER_RATE

TRAN_RATE_REM_TERM

T_RATE_INT_RATE_CD

60 - Cash Flow Edit Requirements This table property identifies the columns required
by the cash flow edit process, which are in addition to the Cash Flow Processing
Requirements table property. The cash flow edit process is a Data Correction Pro-
cessing function provided with Balance and Control for data scrubbing in prepara-

Object Registration

16-30 Oracle Financial Services Installation and Configuration Guide

tion of running a cash flow process. This property is required for the following table
classifications:

The Cash Flow Edit Requirements table property is composed of the following
fields:

CUR_NET_PAR_BAL_C

ORG_BOOK_BAL

REMAIN_TERM_MULT_C

80 - Multi-Currency Requirements This table property identifies the column that is
required for processing functionality that is multi-currency enabled. The following
table classifications require this property:

The Multi-Currency Requirements table property is composed of the following
field:

ISO_CURRENCY_CD

100 - TP Option Costing Requirements This table property identifies columns required
for running Transfer Pricing option costing processing on a table or view. Only the
TP Option Costing table classification (370) requires this property.

The fields required for TP Option Costing are:

Code Description

200 TP Cash Flow

360 RM Standard

370 TP Option Costing

Code Description

200 TP Cash Flow

210 TP Non-Cash Flow

300 Transaction Profitability

310 Instrument Profitability

360 RM Standard

370 TP Option Costing

Object Registration

FDM Object Management 16-31

CUR_OAS

CUR_STATIC_SPREAD

HISTORIC_OAS

HISTORIC_STATIC_SPREAD

ORG_MARKET_VALUE

110 - TP Basic Requirements This table property identifies columns required for run-
ning basic Transfer Pricing processing on a table or view. Each of the Transfer Pric-
ing processing table classifications require this property:

The fields required for Transfer Pricing processing are:

ADJUSTABLE_TYPE_CD

CUR_NET_RATE

CUR_TP_PER_ADB

INTEREST_RATE_CD

LAST_REPRICE_DATE

MARGIN

MATCHED_SPREAD_C

MATURITY_DATE

NEXT_REPRICE_DATE

ORIGINATION_DATE

PERCENT_SOLD

PRIOR_TP_PER_ADB

RATE_CAP_LIFE

RATE_CHG_MIN

Code Description

200 TP Cash Flow

210 TP Non-Cash Flow

370 TP Option Costing

Object Registration

16-32 Oracle Financial Services Installation and Configuration Guide

RATE_CHG_RND_CD

RATE_CHG_RND_FAC

RATE_FLOOR_LIFE

REPRICE_FREQ

REPRICE_FREQ_MULT

TEASER_END_DATE

TRANSFER_RATE

TRAN_RATE_REM_TERM

Stored Procedure Table Properties
Stored Procedure table properties consist of validation logic required for table clas-
sifications. For an object to be assigned to a particular table classification, it must
meet all of the logic requirements for the classification, if any. For example, the RM
Standard Table Classification requires that any “B” (“Both Instrument and Ledger”)
leaf columns on an object be assigned to that classification.

Logic validations are implemented using Oracle stored procedures. These stored
procedures are run whenever an object is assigned to a new table classification in
the Table Classification Assignment Wizard of FDM Administration.

The following table properties identify logic validation requirements:

1000 - Validate Instrument Leaves This procedure validates that all instrument leaf col-
umns defined in the FDM metadata exist on the object. The FDM Leaves tab in FDM
Administration displays all of the leaf columns defined in the database. The instru-
ment leaf columns are those entries of Type = B (“Both Instrument and Ledger”).
The Validate Instrument Leaves table property verifies that all of these leaf Col-

Code Description

1000 Validate Instrument Leaves

1010 Validate Instrument Key

1020 Validate Transaction Key

1030 Validate Correction Key

Object Registration

FDM Object Management 16-33

umns exist on the object being classified. This property is a requirement for the fol-
lowing table classifications:

1010 - Validate Instrument Key This procedure validates that the unique key for a table
or view is composed of the ID_NUMBER and IDENTITY_CODE columns. In addi-
tion, the procedure validates that the ID_NUMBER and IDENTITY_CODE columns
on the object are assigned the Processing Key column property in the Column Prop-
erty Assignment Wizard of FDM Administration.

If the object being validated is a view referencing another table, the validation logic
checks the unique key of the physical table. Registration of views referencing other
views is not allowed and such objects fail the Validate Instrument Key procedure.
This property is a requirement for the following table classification:

1020 - Validate Transaction Key This procedure validates that the unique key for an
object is composed of the ID_NUMBER, IDENTITY_CODE, and one or more B
(“Both Instrument and Ledger”) leaf columns. In addition, the procedure validates
that these columns on the object are assigned the Processing Key column property
in the Column Property Assignment Wizard of FDM Administration.

If the object being validated is a view referencing another table, the validation logic
checks the unique key of the physical table. Registration of views referencing other

Code Description

200 TP Cash Flow

210 TP Non-Cash Flow

300 Transaction Profitability

310 Instrument Profitability

360 RM Standard

370 TP Option Costing

Code Description

200 TP Cash Flow

210 TP Non-Cash Flow

310 Instrument Profitability

360 RM Standard

370 TP Option Costing

Object Registration

16-34 Oracle Financial Services Installation and Configuration Guide

views is not allowed and such objects fail the Validate Transaction Key procedure.
This property is a requirement for the following table classifications:

1030 - Validate Correction Key This procedure validates that a unique key for an object
exists. In addition, the procedure validates that the columns in the unique key are
assigned the Processing Key column property in the Column Property Assignment
Wizard of FDM Administration.

If the object being validated is a view referencing another table, the validation logic
checks the unique key of the physical table. Registration of views referencing other
views is not allowed and such objects fail the Validate Correction Key procedure.
This property is a requirement for the following table classification:

Description Table Mapping
Description Table Mapping provides the means to designate the data structures
where descriptions are stored for code value columns. The mapping of a Code
column name to a data structure storing descriptions for that code is then accessed
by the OFS applications for reporting and user-interface operations.

For example, the DEPOSITS table has a code column named ACCRUAL_BASIS_
CD. This column stores values such as 1, 2, or 3. The real world descriptions for
these code values are 30/360, Actual/360, and Actual/Actual. For the user to be
able to view these descriptions in a report, or within the Data Filter ID
user-interface, for example, the ACCRUAL_BASIS_CD column must be mapped to
the appropriate table or view from which these descriptions are retrieved.

For MLS enabled Code Descriptions, map to the appropriate Language Compatible
View supporting that Code Column. For non-MLS enabled Code Descriptions, map
to the table storing the code names and descriptions.

Refer to Chapter 15, "FDM Multi-Language Support" for information on how to
create the data structures to support MLS enabled Code Descriptions.

Code Description

300 Transaction Profitability

Code Description

330 Data Correction Processing

Client Data Objects

FDM Object Management 16-35

Client Data Objects
As stated earlier, FDM supports the use of customized database objects. Such
objects are termed as Client Data Objects to distinguish them from FDM Reserved
objects seeded in the database by the FDM Database Upgrade and Database
Creation processes. The FDM actually creates default client data objects for financial
instruments. Although these tables are created by the FDM Database Creation
process, they are considered client data objects because FDM does not reserve the
object names. Any table or view (except for the LEDGER_STAT table) that does not
have an OFSA_ prefix is considered to be a client data object.

This section discusses the different types of Client Data Objects and how to manage
them.

There are several distinct categories of client data objects:

■ Instrument and Account

■ User Defined Code Descriptions

■ LEDGER_STAT

■ Free Form

Instrument and Account
Instrument and Account objects are tables and views storing traditional financial
services information about customers and accounts. These are the most commonly
used objects for OFS processing and reporting operations.

Included in this group are all of the Instrument and Services tables created by the
FDM Database Creation Process (referred to as seeded Instrument or seeded
Services tables) as well as any other such objects created by users. You can
customize these tables as needed for your implementation. You are allowed to
unregister (and then drop) any of the seeded Instrument tables.

In order to be available for OFS processing operations, Instrument and Account
must be properly classified with the FDM Table Classifications. Refer to Object
Registration for information regarding the different Table Classifications available
within FDM.

Creating New Instrument and Account Tables
Because most Instrument and Account tables are used for OFS processing
operations, it is recommended that you use the Instrument Creation Template
scripts provided with the database package when creating your own. These

Client Data Objects

16-36 Oracle Financial Services Installation and Configuration Guide

templates provide the basic fields and indexes required for such tables to be used
for OFS processing operations. You can edit these template scripts as needed for
your implementation.

The template scripts are located in the following directory in the database package:

<UPGRADE_HOME>/utilities/instrument_templates

The templates provide instructions on how to use them and modify them for
creating customized instrument and account tables. Once you have created your
new tables, you need to register them for FDM using the Object Registration
functionality within FDM.

Using Views
FDM supports the use of database views. This means that you can create views that
serve as Instrument and Account objects for OFS processing and reporting
functions. The OFS applications do not make a distinction between tables and views
for any processing or reporting operations.

FDM does impose some limitations on the use of views for these purposes. These
limitations are:

1. All views must be owned by the FDM Schema Owner. In order to be able to
register a view with the FDM Metadata, the view must be owned by the FDM
Schema Owner.

2. The FDM Table Classifications for OFS processing prohibit views on views. This
means that you can create views to reference other views only if you do not
intend on assigning one of the following FDM processing classifications:

■ TP Cash Flow (200)

■ TP Non-Cash Flow (210)

■ Transaction Profitability (300)

■ Instrument Profitability (310)

■ RM Standard (360)

■ TP Option Costing (370)

The FDM Administration application enables you to register and assign privileges
for views just like tables.

Client Data Objects

FDM Object Management 16-37

Registering Tables in other Schemas
FDM enables you to register client data objects from schemas other than the FDM
Schema Owner. When such an object is registered using the FDM Administration
application, the application creates a view owned by the FDM Schema Owner to
reference the newly registered object.

To register a table from another database instance, create a view on that table owned
by the FDM Schema Owner referencing a database link to the instance. Then
register the view in FDM Administration.

Seeded Instrument and Account Tables
The FDM Database Creation process creates the following default instrument and
account objects. You can unregister or modify the objects as appropriate:

Instrument Tables

■ COMMERCIAL_LOAN

■ CONSUMER_LOAN

■ CREDIT_CARDS

■ DEPOSITS

■ INVESTMENTS

■ MORTGAGES

■ MORTGAGE_BACK_SEC

■ WHOLESALE_FUNDING

■ TERM_DEPOSITS

■ FORWARD_CONTRACTS

■ INTEREST_RATE_OPTIONS

■ INTEREST_RATE_SWAPS

Transaction Tables

■ COMMERCIAL_LOAN_TRANSACTIONS

■ CONSUMER_LOAN_TRANSACTIONS

■ CREDIT_CARDS_TRANSACTIONS

■ CREDIT_CARDS_TRANSACTIONS

Client Data Objects

16-38 Oracle Financial Services Installation and Configuration Guide

■ DEPOSITS_TRANSACTIONS

■ INVESTMENTS_TRANSACTIONS

■ MORTGAGES_TRANSACTIONS

■ MORTGAGE_BACK_SEC_TRANSACTIONS

■ WHOLESALE_FUNDING_TRANSACTIONS

■ TERM_DEPOSITS_TRANSACTIONS

Services Tables

■ CC

■ CD

■ CK

■ CL

■ CN

■ IL

■ HH

■ DC

■ IV

■ LS

■ MC

■ ML

■ OD

■ OL

■ OS

■ RA

■ SD

■ SV

■ TR

Customer and Account Tables

Client Data Objects

FDM Object Management 16-39

■ ACCT

■ CUST_ADDR

■ CUST

■ IND

■ BUS

Collateral Tables

■ ACCOUNT_COLLATERAL

■ ACCOUNT_GUARANTOR_RELATION

■ COLLATERAL_BOATS

■ COLLATERAL_OWNERS

■ COLLATERAL_REAL_ESTATE

■ COLLATERAL_VEHICLES

■ COLLATERAL

■ COLLATERAL_ASSESSMENT_HISTORY

■ COLLATERAL_AUCTION_DETAILS

■ COLLATERAL_INSURANCE_DETAILS

■ COLLATERAL_OTHER_INSTITUTIONS

■ COLLATERAL_SHARES

User-Defined Code Descriptions
FDM provides MLS enabled data structures to support the code columns existing
on the seeded Instrument and Account tables. However, if you add any new code
columns to any of your Instrument and Account tables, you need to create and
register the supporting data structures for the code descriptions. Such data
structures are referred to as User-Defined Code Description objects.

Single Language Environment
In a single language environment, all that is needed is a single table providing the
code descriptions. The table needs to have the code column itself, as well as one or
more columns providing description information for the code values, such as a

Client Data Objects

16-40 Oracle Financial Services Installation and Configuration Guide

short description and a long description. The FDM naming convention for such
tables is the name of the Code column with an _DSC suffix.

For an example, assume that you have created a new code column ACCOUNT_
OFFICER_TYPE_CD and registered it for one or more of your instrument tables.
The table to provide the short and long description values for this code column
might be named ACCOUNT_OFFICER_TYPE_DSC and appear as follows:

Table Name: ACCOUNT_OFFICER_TYPE_DSC

After the table is created, register it for FDM using the FDM Administration
application and assign it to an appropriate Table Classification. Appropriate Table
Classifications for User Defined Code Description objects in a single language
environment are as follows:

Complete the appropriate Description Table Mappings for any instrument tables on
which the code column exists.

Multi-Language Environment
In a multiple language environment, you need to separate the translatable
information (that is, the code descriptions) from the base table storing the code
values. To do this, refer to Chapter 15, "FDM Multi-Language Support".

Managing Data for User Defined Code Descriptions
User reporting operations join data from Instrument and Account objects with the
data in Code Description objects. If unique code values are missing from the
mapped Code Description object for that code column, users report return fewer
records than they should because the join excludes any records that do not match.

Column Name Column Definition

ACCOUNT_OFFICER_TYPE_CD NUMBER(5)

ACCOUNT_OFFICER_TYPE VARCHAR2(40)

DESCRIPTION VARCHAR2(255)

Object Table Classification Assignment

Code Description Table 298 - Code Descriptions User-Defined

Client Data Objects

FDM Object Management 16-41

Therefore, it is critical that all unique code values for a given code column are
correctly represented in the mapped Code Description object.

FDM provides a utility procedure Synchronize Instrument to automatically
generate rows in the User-Defined Code Description data structures for any new
code values in the Instrument and Account objects. This procedure reads the
Description Table Mappings for each code column in a given Instrument and
Account object to determine how to insert the missing rows. For more information
on how to run this procedure, refer to Chapter 21, "FDM Utilities".

LEDGER_STAT
The LEDGER_STAT table is an FDM Reserved Object Name that stores client data.
FDM reserves this table name and the structure of this table for internal use.
However, because the LEDGER_STAT table does store client account information,
you are allowed to add new columns to the table (such as Leaf Columns).

If this table is dropped or unregistered from the FDM database, the Database
Upgrade Process recreates it and its supporting metadata.

Loading Data into LEDGER_STAT
FDM provides the Ledger Stat Load procedure for loading data into the LEDGER_
STAT table. For information on how to use this procedure, refer to Chapter 21,
"FDM Utilities".

Maximum Number of Leaves on LEDGER_STAT
The maximum number of user-defined Leaf Columns allowed on the LEDGER_
STAT table is 7. This number is in addition to the 4 FDM seeded Leaf Columns.

Free Form
Free Form objects include any user created tables and views that are not categorized
as Instrument or Account objects. When creating such objects for FDM, assign the
User Defined Table Classification to them during Object registration.

Note: The SYNCHRONIZE_INSTRUMENT procedure only
inserts missing rows for User Defined and User Editable Code
Descriptions objects. The procedure provides an error message for
any code values in the Instrument and Account objects that do not
exist in FDM Reserved Code Description objects that are protected
from update.

Risk Manager Results Tables

16-42 Oracle Financial Services Installation and Configuration Guide

If you intend on running the Balance and Control Data Correction Processing
functionality for Free Form objects, refer to the requirements for that Table
Classification in Object Registration. Otherwise, because Free Form objects are not
used for any OFS processing operations, there are no requirements or limitations on
their definition.

Risk Manager Results Tables
Risk Manager results tables are created during processing of the Risk Manager
Process ID to store output of the process. These tables tend to accumulate in the
database over time as users create and run new Process IDs.

Types of Results Tables
There are two different categories of Risk Manager Results tables created during
processing. These categories are:

■ Scenario Based Results Tables

■ Earnings at Risk Results Tables

Scenario Based Results Tables
Scenario Based Risk Manager processing outputs a portion of the results into static
tables that store results for all such processes. However, this processing also creates
new tables (referred to as dynamic objects) to store the detail results output.

Tables created for the detail results are created and named dynamically by the Risk
Manager processing engine. These tables are created based upon a template table
definition.

Each Scenario based Risk Manager process populates and/or creates the following
output tables:

Type of Result Table Table Name Template Table Name

Static OFSA_RESULT_MASTER N/A

Static OFSA_CONSOLIDATED_MASTER N/A

Dynamic RES_DTL_XXXXXX OFSA_IDT_RESULT_DETAIL

Dynamic CONS_DTL_XXXXXX OFSA_IDT_RESULT_DETAIL

Risk Manager Results Tables

FDM Object Management 16-43

The Table Name format for all dynamic tables contains a number extension
(designated by the XXXXXX in the list). The number extension is the SYS_ID_NUM
of the Risk Manager Process ID that created the table.

For example, the table RES_DTL_123456 was created by the Risk Manager Process
ID identified as SYS_ID_NUM=123456 in the OFSA_CATALOG_OF_IDS table.

Earnings at Risk Results Tables
Earnings at Risk (EAR) processing in Risk Manager creates dynamic tables to store
process results. Tables created for the EAR results are created and named
dynamically by the Risk Manager processing engine. These tables are created based
upon a template table definition.

Each EAR process creates and populates the following output tables:

Dynamic Results Table Definition
The definition and structure of the dynamic Risk Manager results tables are based
on template tables in the database. Risk Manager uses the structure and definition
of the appropriate template table to create the results table during the execution of
the Process ID.

When a Risk Manager Process ID is executed for the first time, the specification for
the dynamic results output table, including column definitions and sizing
parameters, is based upon the template table. During subsequent execution of the
same Process ID, if either the dynamic results table or the template table has been
modified so that the table structure and column definitions are no longer the same,
Risk Manager drops and re-creates the results table using the template table as a
basis. The drop and re-creation of the results table only occurs when the column
order, column names, or column definitions in the results table do not match those
of the template table. Differences in table sizing parameters do not cause the drop
and re-creation of the results table.

Type of Result Table Table Name Template Table Name

Dynamic EAR_LEAF_DTL_XXXXXX OFSA_EAR_LEAF_DTL

Dynamic EAR_LEAF_AVG_XXXXXX OFSA_EAR_LEAF_AVG

Dynamic EAR_TOTAL_AVG_XXXXXX OFSA_EAR_TOTAL_AVG

Dynamic EAR_TOTAL_DTL_XXXXXX OFSA_EAR_TOTAL_DTL

Transformation Output Tables

16-44 Oracle Financial Services Installation and Configuration Guide

The structure and definition of the static results tables is not affected by the Process
ID. The Process ID populates these tables with data, but does not change their
structure.

When the Risk Manager Process ID and the associated results are no longer needed,
the Process ID should be deleted because the result tables can be very large. To
delete the Risk Manager Result Detail table, delete the actual Process ID in Risk
Manager. The Result Detail table is deleted when the Process ID is deleted.

For more information on the Results tables, refer to the Oracle Risk Manager Reference
Guide

Transformation Output Tables
Users create transformation output tables by running the Transformation ID within
the OFS applications. These tables are categorized as dynamic objects as they are
created automatically by the OFS Transformation processing engine. FDM provides
administrators with the ability to control output table definitions and storage
parameters.

The following tasks related to output table and index creation are explained in this
section:

■ How the OFSA Leaf Setup is used to define column names for transformation
output tables and rate weighting.

■ How you can control which indexes are created for each Transformation ID
output table.

■ How you can control the physical storage parameters used to create each type
of Transformation ID output table and its indexes.

Leaf Setup and Output Tables
The Leaf Setup for Financial Elements has three attributes: Column Name, Display
Name and Weighting Financial Element. The Transformation ID uses Column
Name and Display Name to define the Financial Element columns in the
transformation output table.

A separate column is created in the transformation output table for each distinct
Financial Element in the source table, or for a subset of these Financial Elements, as
selected by the Data Filter associated with the Transformation ID. Note that the
Transformation ID creates every transformation output table under the schema of
the FDM Schema Owner, even though the ID is run by an end user.

Transformation Output Tables

FDM Object Management 16-45

The value for Column Name in Leaf Setup for each Financial Element is used as the
column name in the output table for that Financial Element column. The Display
Name for the Financial Element is used as its Display Name in the FDM Metadata,
which defines the name that is displayed for each column inside the OFS
applications.

The FDM database upgrade provides default values for these new columns. The
Synchronize Instrument utility also provides defaults for the Column Name
column. After the upgrade, and after each time you run the Synchronize Instrument
utility, you should edit Leaf Setup to make sure that every Financial Element has a
correct and meaningful value for each of these attributes, and that they are unique.

In the event that a Transformation ID encounters an invalid or duplicated Column
Name value in Leaf Setup for the set of Financial Elements to be transformed, it
stops processing and logs an error in the PROCESS_ERRORS table.

For each rate Financial Element column in the newly created transformation output
table, the name of the weighting financial element column is recorded as a Related
Field column property. The column name comes from the COLUMN_NAME
column of the row in OFSA_DETAIL_ELEM whose LEAF_NODE value matches the
WEIGHTING_FE value for the column in the output table. The column names
recorded as the Related Field column property reflect the weighting financial
element assignments that are in effect in the OFSA_DETAIL_ELEM table at the time
the transformation output table is created.

Template Tables and Indexes
There are four kinds of transformations processed by the Transformation ID.

■ Ledger_ Stat

■ Risk Manager Result Detail Cash Flow (and Consolidated Cash Flow)

■ Risk Manager Result Detail Gap (and Consolidated Gap)

■ Tree Rollup

Note: Because of the way the Transformation ID uses Column
Name and Display name, it is essential that you provide
meaningful values for these attributes for all of your Financial
Elements. The values for Column Name and Display Name in the
Leaf Setup for all Financial Elements must be non-null and unique.
The values for Column Name must also be in upper case.

Transformation Output Tables

16-46 Oracle Financial Services Installation and Configuration Guide

Consolidated Cash Flow and Consolidated Gap refer to output tables created by Risk
Manager for results aggregated into the Reporting Currency.

Each of these transformations use a template table to define the columns in all of the
output tables of that transformation type. The Transformation ID uses definitions in
FDM Metadata for the template tables. These definitions are used to define FDM
Metadata entries for columns in the output table that have no matching column in
the source table.

The template tables are only definitions. They contain no data.

Each template table is recorded in the FDM Metadata with a Table Classification
assignment that is unique to that template table.

The names of the template tables and associated Table Classification assignments
appear in the following table.

The Table Classifications assigned to the template tables are FDM Reserved
classifications. These classifications are not available for assignment to any other
objects.

Template Indexes
The Ledger_Stat and the two Risk Manager templates are similar in definition and
usage. For each of these three templates, any index on the template table is created
on the Transformation ID output table at the end of the ID processing.

A single, unique index is pre-created by the FDM database upgrade on each of these
three template tables. You can create additional indexes on these template tables if
needed. Each additional index that you create on any of the template tables is
created on each output table subsequently created using that template.

Template Table Name Table Classification

OFSA_TRANSFORM_LS_TEMPLATE 260 - Trans Ledger Stat Template

OFSA_TRANSFORM_RMC_TEMPLATE 270 - Trans RM Cash Flow Template

OFSA_TRANSFORM_RMG_TEMPLATE 280 - Trans RM GAP Template

OFSA_TRANSFORM_ROLLUP_
TEMPLATE

290 - Trans Rollup Template

Transformation Output Tables

FDM Object Management 16-47

Naming Restrictions
Oracle index names must be unique within each schema. In order to guarantee the
uniqueness of index names for indexes created on the output tables, the index name
must contain the name of the output table. For the name of the index created on the
output table, the portion of the template index name that matches the template table
name is replaced with the output table name.

For example, if you run a Transformation ID of the Ledger Stat type with output
table name MY_LS_TRANSFORMATION and the TRANSFORM_LS_TEMPLATE
table has template indexes called:

■ TRANSFORM_LS_TEMPLATE

■ TRANSFORM_LS_TEMPLATE_1

then the indexes created on MY_LS_TRANSFORMATION are named:

■ MY_LS_TRANSFORMATION

■ MY_LS_TRANSFORMATION_1

Any indexes that you create on the template tables must conform to the following
naming convention:

template_table_name || suffix

The Transformation ID interface restricts transformation output table names to 26
characters. The Transformation engine appends one of the following suffixes to Risk
Manager Transformation output tables:

■ _C

■ $C

■ _G

■ $G

Because of the suffix, Risk Manager Transformation output table names are limited
to 28 characters or less. Therefore, in order to ensure uniqueness of all secondary
template indexes created on an output table, observe the following guidelines:

■ The suffix for indexes created on the Risk Manager template tables is limited to
two characters.

■ The suffix for indexes created on the Ledger_Stat template tables is limited to
four characters.

Transformation Output Tables

16-48 Oracle Financial Services Installation and Configuration Guide

If you create template indexes with a longer suffix some of the secondary template
indexes may fail to be created at the end of the transformation process due to
naming conflicts. However, only failure to create the primary index causes the
transformation to fail.

The OTHER_LEAF_COLUMNS Placeholder Column
The OTHER_LEAF_COLUMNS column in each template is a placeholder column.
In the creation of the output tables, this column is replaced by one or more leaf
columns, depending on the transformation type:

■ For Ledger_Stat transformations, it is replaced with all of the other leaves that
are defined in OFSA_CATALOG_OF_LEAVES for inclusion in the LEDGER_
STAT table.

■ For Risk Manager Result Detail transformations, it is replaced by the product
leaf column used in generating the source Result Detail table.

You can include the OTHER_LEAF_COLUMNS column in the additional template
indexes that you create on any of the template tables. When the index is created,
this place-holder column is replaced by the column or set of columns whose place is
held by it in the transformation template table. This works for a single-column
index on the OTHER_LEAF_COLUMNS column, as well as on compound indexes
that include that column.

User-Defined Indexes
For some Transformation ID output tables, you may want to create additional
indexes, beyond those that are defined by the template indexes, that apply to all
output tables of that type.

In the event that processing for the existing output table requires that the table be
recreated, the Transformation ID attempts to recreate all user-defined indexes on the
output table.

Indexes and Dimension Filters
The Transformation ID allows one or more of the leaf columns to be excluded from
the transformation. This is known as a dimension filter. The output table for a
Transformation ID that includes a dimension filter is created without the filtered
leaf columns. For any template index or user-defined index that contains one or
more leaf columns that have been excluded by the dimension filter, the
Transformation ID attempts to create the index on the output table without the
filtered columns. If all of the columns in an index are excluded by the dimension
filter, then that index is not created or recreated for the output table.

Transformation Output Tables

FDM Object Management 16-49

A Single Index for the Tree Rollup Transformation
The Tree Rollup transformation is different from the other three transformations. It
does not use template indexes. It creates a single, unique index on the column in the
output table that replaces the LEAF_COLUMN column in the OFSA_
TRANSFORM_ROLLUP_TEMPLATE table.

For example, in the output table for a transformation of a Tree Rollup that is defined
on the Org Unit leaf, the ORG_UNIT_ID column replaces the LEAF_COLUMN
column. A single, unique index is created on the ORG_UNIT_ID column in the
output table.

Table and Index Physical Storage Defaults
There are two tables in the OFSA database that enable you to control the physical
storage parameters for output tables and their indexes. These are:

■ OFSA_TABLE_STORAGE_DEFAULTS

■ OFSA_INDEX_STORAGE_DEFAULTS

These tables enable you to specify all of the physical storage parameters allowed by
the CREATE TABLE and CREATE INDEX statements, respectively. The exception to
this is partitioned tables. The Transformation ID does not currently support
transformations into partitioned output tables. Additionally, for the Ledger Stat
transformation, these tables enable you to control how the INITIAL and NEXT
parameters are computed during the transformation process.

Because these two tables are similar, the material in the following sections refers to
both tables unless otherwise noted, and references to storage parameters for output
tables apply equally to indexes.

The Storage Defaults Tables
The following table lists and describes the column names for the OFSA_TABLE_
STORAGE_DEFAULTS and OFSA_INDEX_STORAGE_DEFAULTS tables. The
column names and descriptions are identified for both tables with the following
exception: The OFSA_INDEX_STORAGE_DEFAULTS table does not contain the
PCT_USED nor the CACHE columns.

Column Name Null? Type

OUTPUT_TABLE_
CLASS_CD

NOT NULL NUMBER (5)

Transformation Output Tables

16-50 Oracle Financial Services Installation and Configuration Guide

The unique key for the storage defaults tables is OUTPUT_TABLE_CLASS_CD +
USER_NAME. However, USER_NAME can be null. This enables you to define one
row for each OUTPUT_TABLE_CLASS_CD value with a null USER_NAME, and
many rows for each OUTPUT_TABLE_CLASS_CD with the USER_NAME filled in.

In the following sections, type-level row refers to any row with a null USER_
NAME; user-level row refers to any row having a value for USER_NAME.

The following sections explain the usage for each of these columns.

USER_NAME VARCHAR2 (30)

TABLE_SPACE_NAME VARCHAR2 (30)

PCT_FREE NUMBER (2)

PCT_USED NUMBER (2)

INI_TRANS NUMBER (5)

MAX_TRANS NUMBER (5)

MIN_EXTENT_SIZE NUMBER (14)

MAX_EXTENT_SIZE NUMBER (14)

DESIRED_EXTENTS NUMBER (5)

INITIAL_EXTENT NUMBER (14)

NEXT_EXTENT NUMBER (14)

MIN_EXTENTS NUMBER (5)

MAX_EXTENTS NUMBER (5)

PCT_INCREASE NUMBER (5)

FREELISTS NUMBER (5)

FREELIST_GROUPS NUMBER (5)

LOGGING VARCHAR2 (3)

DEGREE VARCHAR2 (10)

INSTANCES VARCHAR2 (10)

CACHE VARCHAR2 (5)

BUFFER_POOL VARCHAR2 (7)

Column Name Null? Type

Transformation Output Tables

FDM Object Management 16-51

Storage Defaults by Transformation Type
You can enter one type-level row per transformation output table type in each of the
storage default tables. The transformation output table type is identified by the
OUTPUT_TABLE_CLASS_CD value in the FDM Metadata for output tables of that
type.

Type-level rows are keyed by OUTPUT_TABLE_CLASS_CD only, with a null value
in the USER_NAME column.

The FDM database upgrade initializes one row in each of the storage defaults tables
for each transformation output table type with default values. You should review
the default values and customize them to your specific situation.

Storage Defaults by Transformation Type + User
You can create additional user-level rows in the storage defaults tables, defined by
USER_NAME within each transformation type. This feature provides finer control
over the use of the default storage parameters and is particularly helpful for
tablespace management.

For example, you have 10 users and each is creating a few small-to-medium-sized
output tables of the Ledger_Stat transformation type. You also have one user (Scott)
who is creating multiple large-sized tables of that type. The first 10 users might
share a single tablespace for their output tables, while Scott’s output tables could be
assigned to a separate tablespace.

Transformation Output Table Type Output Table Class Cd

Transformed Ledger_Stat 220

Transformed RM Cash Flow 230

Transformed RM Cash Flow
Consolidated

430

Transformed RM GAP 240

Transformed RM GAP Consolidated 440

Transformed Tree Rollup 250

Transformation Output Tables

16-52 Oracle Financial Services Installation and Configuration Guide

Ordering the Parameter Definition Levels
The ordering of the default storage parameters is from most specific to most
general, individually by parameter. That is, any parameter defined at the user level
is first; if not defined there, then the parameter defined at the type level is used; if it
is not defined at the type level, then the parameter is either computed or defaulted
by the Transformation ID process.

Referring to the example, the type-level row defines the parameter values for the
output tables for the first ten users and the user-level row, containing SCOTT in the
USER_NAME column, defines the parameters values for Scott’s output tables. Not
all of the parameters need to be specified for Scott. You may want to direct his
output tables (or indexes) to a different tablespace and leave all of the other
columns null. For those parameters, the values from the type-level tables are used
when creating Scott’s output tables or indexes.

Physical Storage for the Ledger Stat Transformation
The Risk Manager and Tree Rollup transformations have relatively small freespace
requirements. Default values for the INITIAL and NEXT parameters for these
transformations are initialized by the FDM database upgrade in the storage defaults
tables as described in the section entitled "Table and Index Physical Storage
Defaults" in this chapter. You should monitor the average space requirements for
these transformation types and adjust these values accordingly.

The Ledger Stat transformation type typically requires much larger amounts of
freespace. In order to help you size these tables correctly, the transformation engine
can estimate the amount of freespace required for each output table that it creates
for a Ledger Stat transformation.

Fitting Into Available Freespace
For the Ledger Stat transformation, the Transformation ID engine estimates the
minimum amount of freespace required in the designated tablespace to create each
table or index. If it is unable to pre-allocate all of the estimated minimum required
freespace, either due to insufficient freespace or freespace fragmentation, then the
object is not created.

Failure to create the output table, or failure to create the unique template index (if
one is defined) constitutes a fatal error and the transformation is not performed.
Failure to create secondary template indexes or user-defined indexes does not result
in an error and the transformation proceeds.

Transformation Output Tables

FDM Object Management 16-53

If the freespace is fragmented such that the entire space required cannot be
pre-allocated using the current values for the INITIAL and NEXT storage
parameters (whether specified in the applicable storage defaults table or whether
they are computed by the Transformation ID), then the extent sizes are reduced, the
number of extents increased and the freespace allocation is attempted again. This
process continues until it is determined that the estimated minimum required
freespace can be allocated in the available freespace, or until one of the following
error conditions is reached:

■ INITIAL drops below the value specified for MIN_EXTENT_SIZE

■ The number of extents exceeds the value specified for MAX_EXTENTS.

All of the estimated required space may not actually be pre-allocated at the time the
table is created. Only the number of extents specified by the MINEXTENTS
parameter are actually allocated when the table is created.

Computing INITIAL and NEXT Storage Parameters
For the Ledger Stat transformation type, the determination of the INITIAL and
NEXT storage parameters, used to create an output table or one of its indexes, are
described in the following table. MIN_EXTENT_SIZE, MAX_EXTENT_SIZE,
INITIAL_EXTENT, and NEXT_EXTENT are expressed in bytes, as in the USER_
TABLES and USER_INDEXES catalog views.

Storage Parameter Parameter Conditions

INITIAL_EXTENT If INITIAL_EXTENT is greater than 0, the Transformation ID
attempts to use this value as-is for the INITIAL parameter.

If INITAL_EXTENT equals 0 or is null, the Transformation ID
computes the value for the INITIAL parameter, based on the
value of DESIRED_EXTENTS. If DESIRED_EXTENTS is not
specified, then the Transformation ID attempts to allocate all of
the required freespace in a single initial extent.

DESIRED_EXTENTS If DESIRED_EXTENTS is greater than 1, then this storage
parameter controls the computation of the INITIAL and NEXT
storage parameters. The Transformation ID attempts to create
DESIRED_EXTENTS number of extents of equal size, totaling
the required freespace. INITIAL and NEXT are both set to the
freespace required, divided by DESIRED_EXTENTS.

Transformation Output Tables

16-54 Oracle Financial Services Installation and Configuration Guide

Usage Summary
Depending on whether or not you specify values for INITIAL_EXTENT and
DESIRED_EXTENTS in an applicable row in the applicable storage defaults table,
the Transformation ID determines the sizes of the extents for a Ledger Stat
transformation output table or index in one of three possible ways:

Method 1

If INITIAL_EXTENT is specified, the Transformation ID uses that value for the
INITIAL parameter when creating the table or index.

Method 2

If neither INITIAL_EXTENT nor DESIRED_EXTENTS is specified, the
Transformation ID computes the INITIAL parameter, based on the estimated

NEXT_EXTENT If INITIAL is computed using DESIRED_EXTENTS, then any
value specified for NEXT_EXTENT is overridden and the NEXT
parameter is set equal to the computed value for the INITIAL
parameter.

If NEXT_EXTENT is greater than 0, and DESIRED_EXTENTS is
less than or equal to 1 or is not specified, the Transformation ID
attempts to used the specified NEXT_EXTENT value as-is for the
NEXT parameter.

If NEXT_EXTENT is 0, and DESIRED_EXTENTS is less than or
equal to 1 or is not specified, the NEXT parameter is computed
as a predetermined percentage (currently 10%) of the specified
or computed value for the INITIAL parameter.

MIN_EXTENT_SIZE This value is used only if the INITIAL parameter is computed.
INITIAL is set to MIN_EXTENT_SIZE if its computed value is
less than MIN_EXTENT_SIZE.

MAX_EXTENT_SIZE This value is used only if the INITIAL parameter is computed.
INITIAL is set to MAX_EXTENT_SIZE if its computed value is
greater than MAX_EXTENT_SIZE.

MIN_EXTENTS Determines the number of extents that are pre-allocated for the
table when it is created.

Computed or supplied values for INITIAL and NEXT are
rounded up to the next multiple of five Oracle data blocks.

Storage Parameter Parameter Conditions

Transformation Output Tables

FDM Object Management 16-55

amount of freespace required, and attempts to create a single initial extent
containing all of the required freespace.

Method 3

If INITIAL_EXTENT is not specified and DESIRED_EXTENTS is specified, the
Transformation ID attempts to create DESIRED_EXTENTS number of equally-sized
extents sufficient to meet or exceed the freespace requirement.

These three methods are explained in detail, as follows:

Method 1 Detailed: INITIAL_EXTENT is specified (value greater than 0).

In this case, the INITIAL parameter is taken from the INITIAL_EXTENT value. The
NEXT parameter is taken from the NEXT_EXTENT value if it is specified, otherwise
it is computed as a percentage (10%) of the INITIAL parameter.

The INITIAL and NEXT parameter values are then rounded up to the nearest
multiple of 5 Oracle data blocks. Only the number of extents specified by the MIN_
EXTENTS parameter are pre-allocated when the table is created.

Method 2 Detailed: INITIAL_EXTENT is not specified (value is null or 0) and
DESIRED_EXTENTS is not specified (value is null or is less than or equal to
1).

In this case, the INITIAL parameter is set equal to the estimated freespace required.
If this is less than MIN_EXTENT_SIZE or greater than MAX_EXTENT_SIZE, then
INITIAL is adjusted to be in this range. If the NEXT_EXTENT column is specified,
then it is used as-is for the NEXT parameter, otherwise the NEXT parameter is
computed as a percentage (10%) of the computed INITIAL value.

The INITIAL and NEXT parameter values are then rounded up to the nearest
multiple of 5 Oracle data blocks. Only the number of extents specified by the MIN_
EXTENTS parameter are pre-allocated when the table is created.

Method 3 Detailed: INITIAL_EXTENT is not specified (value is null or 0) and
DESIRED_EXTENTS is specified (value is greater than 1).

In this case, the INITIAL parameter is set equal to the estimated freespace required,
divided by DESIRED_EXTENTS. If the result is less than MIN_EXTENT_SIZE or
greater than MAX_EXTENT_SIZE, then INITIAL is adjusted to be in this range. The
NEXT parameter is then set equal to the INITIAL parameter.

Transformation Output Tables

16-56 Oracle Financial Services Installation and Configuration Guide

The INITIAL and NEXT parameter values are then rounded up to the nearest
multiple of 5 Oracle data blocks. Only the number of extents specified by the MIN_
EXTENTS parameter are pre-allocated when the table is created.

As explained in "Fitting Into Available Freespace", the Transformation ID attempts
to allocate the required freespace using the parameter settings resulting from one of
the three cases described. If the total freespace in the tablespace is greater than the
space required for the transformation, but cannot be allocated using the current
parameter settings due to freespace fragmentation, then the current number of
extents is doubled and treated as a value for DESIRED_EXTENTS. In this scenario
the INITIAL and NEXT values are recomputed, according to method 3.

This process is continued until the freespace allocation is successful, or until one of
the following error conditions is reached:

■ The value of INITIAL is less than MIN_EXTENT_SIZE

■ The number of extents exceeds the MAX_EXTENTS storage default parameter

Recommended Usage
For Ledger Stat transformations, it is recommended that you leave the INITIAL and
NEXT default storage parameters null or 0, so that they are estimated by the
Transformation ID. If your end users are transforming large datasets, then you
should use the DESIRED_EXTENTS column to direct the Transformation ID to
break the storage allocation into several equally sized extents, rather than allocating
all of the required freespace into one large initial extent.

It is good for the transformation engine to pre-allocate the majority of the required
freespace for an output table or index so that the space is guaranteed to be there
when it is needed. However, in order to avoid wasted storage space, you should set
the value of the MIN_EXTENTS parameter to about 90% of the DESIRED_
EXTENTS parameter.

For any transformation type, if you find that storage space has been over-allocated,
you can use the ALTER TABLE or ALTER INDEX command to re-allocate the
unused space and return it to the freespace pool.

The following storage defaults columns correspond to the CREATE TABLE or
CREATE INDEX parameters:

■ TABLESPACE_NAME

■ PCT_FREE

■ PCT_USED (OFSA_TABLE_STORAGE_DEFAULTS only)

Transformation Output Tables

FDM Object Management 16-57

■ INI_TRANS

■ MAX_TRANS

■ MAX_EXTENTS

■ PCT_INCREASE

■ FREELISTS

■ FREELIST_GROUPS

■ LOGGING

■ DEGREE

■ INSTANCES

■ CACHE (OFSA_TABLE_STORAGE_DEFAULTS only)

■ BUFFER_POOL

The values for these columns are the same as those that can be seen when querying
the USER_TABLES and USER_INDEXES catalog views. They are used directly in
the CREATE TABLE and CREATE INDEX SQL commands issued by the
Transformation ID process. Refer to the Oracle8i SQL Reference for further
information on these parameters.

It is recommended that you examine the default values for these columns posted by
the FDM Database Upgrade for each of the transformation output table types, and
adjust them to suit your needs. You may find the Data Verification ID helpful for
editing the values in these tables and for creating new entries for individual users.

Creating Transformation Output Tables and Indexes: An Example
The following example illustrates the concepts explained in the previous sections
regarding the creation of transformation output tables and indexes.

For this example, assume that your LEDGER_STAT table has the leaf columns TP_
PROD_ID and RM_COA_ID. However, the Transformation ID that you run for this
example contains a dimension filter that excludes the RM_COA_ID leaf column
from the transformation. Assume, also, that the Data Filter for the Transformation
ID selects the Financial Elements 60, 100, 130, 140. The Column Name values for
these Financial Elements in Leaf Setup are BEG_BAL, END_BAL, END_T_RATE
and AVG_BAL respectively.

Transformation Output Tables

16-58 Oracle Financial Services Installation and Configuration Guide

You have created two additional template indexes on the OFSA_TRANSFORM_LS_
TEMPLATE table. Including the unique index created on the template table by the
OFSA database upgrade, the indexes on OFSA_TRANSFORM_LS_TEMPLATE are:

The Transformation ID to be run creates an output table called OFSA_LEDGER_
STAT_1. This transformation has been run before, so the output table already exists.
After its initial creation, create an index called OFSA_LEDGER_STAT_GL on the
GL_ACCOUNT_ID column of OFSA_LEDGER_STAT_1. The definition of this
Transformation ID indicates that the output table should be dropped and recreated,
and you want the OFSA_LEDGER_STAT_GL index on the existing output table to
be preserved.

For all users besides Scott who run transformations that create output tables of the
Ledger_Stat output type, you have directed those output tables to be created in the
LEDGER_STAT_TS tablespace. Scott is running most of the transformations, so you
have given him his own tablespace, called SCOTT_TS.

You have decided to allow the Transformation ID to compute the INITIAL and
NEXT extent parameters based on the estimated space requirement for the
transformed output table, so you have left the INITIAL_EXTENT and NEXT_
EXTENT columns null.

You know that most of the output tables created by users other than Scott is
relatively small, so you have left DESIRED_EXTENTS = 1 so that the
Transformation ID attempts to allocate all of the required freespace into the initial
extent.

INDEX_NAME UNIQUE? COLUMN_NAME

OFSA_TRANSFORM_
LS_TEMPLATE

YES END_DATE

ORG_UNIT_ID

GL_ACCOUNT_ID

COMMON_COA_ID

OTHER_LEAF_
COLUMNS

CONSOLIDATION_CD

OFSA_TRANSFORM_
LS_TEMPLATE_1

NO ORG_UNIT_ID

OFSA_TRANSFORM_
LS_TEMPLATE_2

NO OTHER_LEAF_
COLUMNS

Transformation Output Tables

FDM Object Management 16-59

Some of the Ledger_Stat output tables that Scott creates are quite large, so you have
entered the value of 20 for the DESIRED_EXTENTS parameter in the user-level row,
so that the Transformation ID pre-allocates 20 equally-sized extents for each of
Scott’s Ledger_Stat output tables. You decide to pre-allocate 90% of the estimated
required freespace for Scott’s tables, so you set MIN_EXTENTS = 18 in Scott’s user
level row.

The relevant rows in the OFSA_TABLE_STORAGE_DEFAULTS table are listed. The
storage default rows for the Ledger_Stat transformation type are identified by
OUTPUT_TABLE_CLASS_CD = 220.

Column Name
Values in the Type-level
Row

Values in the User-level
Row

OUTPUT_TABLE_
CLASS_CD

220 220

USER_NAME SCOTT

TABLESPACE_NAME LEDGER_STAT_TS SCOTT_TS

PCT_FREE 10

PCT_USED 40

INI_TRANS 2

MAX_TRANS 255

MIN_EXTENT_SIZE 1048576

MAX_EXTENT_SIZE 1073741824

DESIRED_EXTENTS 1 20

INITIAL_EXTENT

NEXT_EXTENT

MIN_EXTENTS 1 18

MAX_EXTENTS 505

PCT_INCREASE 0

FREELISTS 1

FREELIST_GROUPS 1

LOGGING YES

DEGREE 1

Transformation Output Tables

16-60 Oracle Financial Services Installation and Configuration Guide

Assume that the required space for the transformation, as estimated by the
Transformation ID, is 24,125,440 bytes and that the freespace in the appropriate
tablespace is sufficient. In the following examples, the TP_PROD_ID (in bold) has
replaced the OTHER_LEAF_COLUMNS column from the template table. Also, the
RM_COA_ID column is not in the output table because it has been filtered by the
dimension filter. You also see differences in the INITIAL, NEXT, MINEXTENTS and
TABLESPACE parameters (all in bold) between the table created by Scott and the
table created by the other users.

The Transformation ID generates the following CREATE TABLE statement to create
the Ledger_Stat output table when a user other than Scott runs the ID:

CREATE TABLE OFS_LEDGER_STAT_1 (
END_DATE DATE NOT NULL
ORG_UNIT_ID NUMBER(14) NOT NULL,
GL_ACCOUNT_ID NUMBER(14) NOT NULL,
COMMON_COA_ID NUMBER(14) NOT NULL,
TP_PROD_ID NUMBER(14) NOT NULL,
CONSOLIDATION_CD NUMBER(5) NOT NULL,
BEG_BAL NUMBER (16,4) DEFAULT 0,
END_BAL NUMBER (16,4) DEFAULT 0,
END_T_RATE NUMBER (16,4) DEFAULT 0,
AVG_BAL NUMBER (16,4) DEFAULT 0)
PCTFREE 10 PCTUSED 40 INITRANS 2 MAXTRANS 255
STORAGE (INITIAL 24125440 NEXT 2416640
 MINEXTENTS 1 MAXEXTENTS 505
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1
 BUFFER_POOL DEFAULT)
LOGGING
TABLESPACE LEDGER_STAT_TS
NOPARALLEL
NOCACHE

INSTANCES 1

CACHE N

BUFFER_POOL DEFAULT

Column Name
Values in the Type-level
Row

Values in the User-level
Row

Transformation Output Tables

FDM Object Management 16-61

If Scott runs the same ID, the following CREATE TABLE statement is generated:

CREATE TABLE OFS_LEDGER_STAT_1 (
END_DATE DATE NOT NULL,
ORG_UNIT_ID NUMBER(14) NOT NULL,
GL_ACCOUNT_ID NUMBER(14) NOT NULL,
COMMON_COA_ID NUMBER(14) NOT NULL,
TP_PROD_ID NUMBER(14) NOT NULL,
CONSOLIDATION_CD NUMBER(5) NOT NULL,
BEG_BAL NUMBER (16,4) DEFAULT 0,
END_BAL NUMBER (16,4) DEFAULT 0,
END_T_RATE NUMBER (16,4) DEFAULT 0,
AVG_BAL NUMBER (16,4) DEFAULT 0)
PCTFREE 10 PCTUSED 40 INITRANS 2 MAXTRANS 255
STORAGE (INITIAL 1228800 NEXT 1228800
 MINEXTENTS 18 MAXEXTENTS 505
 PCTINCREASE 0
 FREELISTS 1 FREELIST GROUPS 1
 BUFFER_POOL DEFAULT)
LOGGING
TABLESPACE SCOTT_TS
NOPARALLEL
NOCACHE

Regardless of who runs the ID, the Transformation ID creates the following indexes
on the output table at the end of the ID processing:

INDEX_NAME UNIQUE? COLUMN_NAME
---------------------- ------- -----------------
OFS_LEDGER_STAT_1 YES END_DATE
 ORG_UNIT_ID
 GL_ACCOUNT_ID
 COMMON_COA_ID
 TRUE_GL_ID
 CONSOLIDATION_CD
OFS_LEDGER_STAT_1_1 NO ORG_UNIT_ID

OFS_LEDGER_STAT_1_2 NO TP_COA_ID

OFS_LEDGER_STAT_1_GL NO GL_ACCOUNT_ID

Transformation Output Tables

16-62 Oracle Financial Services Installation and Configuration Guide

OFS_LEDGER_STAT_1, OFS_LEDGER_STAT_1_1, and OFS_LEDGER_STAT_1_2
are created from the template index definitions. OFS_LEDGER_STAT_1_GL is
created from the SYSTEM_INDEX_INFO definition for that user-defined index,
which existed on the output table prior to its recreation by the Transformation ID.

The template index on the OTHER_LEAF_COLUMNS column (TRANSFORM_LS_
TEMPLATE_2) translates into the OFS_LEDGER_STAT_1_2 index on TP_COA_ID.
RM_COA_ID is excluded by the dimension filter, so it is not included in the index.

Routine Cleanup

Dropping Obsolete Transformation Output Tables
As the FDM Administrator, you are responsible for managing the freespace in the
tablespaces. Periodically unregister and drop old transformation output tables that
are no longer needed by your users. Use the FDM Administration application to
unregister such tables from the FDM Metadata. Once this is done, you can drop the
table (either directly in SQL*Plus or through Enterprise Manager). Dropping the
table releases the space previously occupied by the table so that it can be reused for
other objects.

Deleting from OFSA_STP
All DDL and DCL operations, as well as some DML operations performed during
Transformation ID processing are logged in the OFSA_STP table. It is recommended
that you include a step at the beginning of your monthly processing cycle to delete
older rows from this table.

Transformation ID Error Recovery
When a Transformation ID begins processing, it reserves exclusive use of the output
table until processing is complete, at which time it unreserves the table. This means
that only one Transformation ID can process against the output table at one time.
Output table reservation is accomplished by posting the name of the output table,
the process start time, the TRANSFORM_SYS_ID value of the Transformation ID
reserving the table and the USER_NAME of the current user to a row in the OFSA_
TABLE_TRACKING table.

Unreservation of the output table upon completion of the transformation is
accomplished by posting the process end time to that same row and filling in other
columns in the row that indicate the source of the transformed data and the type of
operations performed by the ID processing.

Message and Audit Objects

FDM Object Management 16-63

If for some reason the output table cannot be created, unreservation of the table is
accomplished during ID processing by deleting the appropriate row from the
OFSA_TABLE_TRACKING table.

In the event of a hardware failure or power outage while the Transformation ID is
processing, an output table can remain reserved, even though processing has not
been completed. The table remains reserved to the original Transformation ID and
user when a failure occurs.

You have two options to complete the process and unreserve the output table. The
first option is to rerun the same ID from the same user. Other users and other
Transformation IDs are locked out. The second option is to delete the appropriate
row from the OFSA_TABLE_TRACKING table. This unreserves the output table
and allows it to be processed by another user and/or a different Transformation ID.

Temporary Objects
Some of the OFSA applications create temporary database objects, including tables
and views. Sometimes these temporary objects are not properly deleted when the
process that created them is complete. For example, this can happen when the
user’s session is interrupted by a network failure. FDM uses a tracking table called
OFSA_TEMP_OBJECTS to help you identify temporary objects that are no longer
needed and can be deleted. Every time an OFS application creates a temporary
object, the creation of the object is recorded in the tracking table. When the
application is finished with the temporary object, the record of the object is dropped
from the tracking table. Objects listed in the tracking table that are not being used
by any process can be safely deleted.

Message and Audit Objects
FDM provides tables for storing error and audit messages for FDM and OFS
processing operations. Because data in the Message Objects increases when
processing operations are performed in FDM, it is important to monitor the number
and size of extents for these tables.

Note: Over time, the size of the Audit and Message tables tend to
grow. It is recommended that you include a step at the beginning of
your monthly processing cycle to delete older rows from these
tables.

Message and Audit Objects

16-64 Oracle Financial Services Installation and Configuration Guide

Audit Tables
Audit tables store detail information for debugging OFS processing operations.

OFSA_AUDIT_TRAIL
Performance Analyzer Allocation processes write output data to the OFSA_AUDIT_
TRAIL table when the Audit Trail checkbox in marked in the Allocation ID. This
table stores information about the data records updated and inserted by the
Allocation process.

The AS_OF_DATE column in this table designates the process date for which the
audit information applies. Use the AS_OF_DATE column to identify old and
obsolete audit information.

OFSA_PROCESS_CASH_FLOWS
The OFSA_PROCESS_CASH_FLOWS table is used whenever the write cash flows
option is turned on when performing cash flow calculations. All records in this
table are identified by the process that creates them. This information is in the
RESULT_SYS_ID column. You may have situations in which the process that
created the records in this table no longer exists. In these cases, the obsolete records
should be removed.

To perform this operation, run the following SQL statement on the database:

Delete from OFSA_PROCESS_CASH_FLOWS
where RESULT_SYS_ID not in
(select SYS_ID_NUM from OFSA_CATALOG_OF_IDS where ID_TYPE in (204,205));

OFSA_STP
OFS applications call stored procedures to create or drop temporary objects. These
same procedures manage entries in OFSA_TEMP_OBJECTS. The stored procedures
have the necessary permissions to create and drop temporary objects and therefore
individual users do not require these permissions.

The OFSA_STP table logs DDL and DCL operations performed by these stored
procedures. Operations such as creating RM Result Detail tables or Transformation
output tables, granting table or role privileges, creating public synonyms and
creating and dropping temporary objects are included in this table.

The Utility procedures (described in Chapter 21, "FDM Utilities") log audit entries
in OFSA_STP. The FDM Administration Grant procedures also log grant statements
into this table.

Packages, Procedures, and Java Classes

FDM Object Management 16-65

The OFSA_STP table is available for your use as well as Oracle Support Services to
resolve problems related to these operations.

Message Tables
Message tables provide warning and error messages for OFS processing operations.

OFSA_PROCESS_ERRORS
The OFSA_PROCESS_ERRORS table stores informational, error and warning
messages for Risk Manager, Transfer Pricing, and Data Correction Processing.

OFSA_MESSAGE_LOG
This table stores informational, error, and warning messages for Performance
Analyzer and Rate Manager processing. Market Manager also creates entries in this
table.

Packages, Procedures, and Java Classes
The FDM database includes PL/SQL packages and procedures, as well as Java
Classes. All of these are loaded into the database by either the FDM database
creation process or database upgrade process. These objects are a required
component of the FDM database definition.

It is possible for one or more of these objects to become INVALID. This can occur
during a database import, or because an object reference by the package, procedure
or java class no longer exists in the database. You or your users may receive Oracle
errors indicating this situation with such errors as:

■ ORA-04068 Existing state of packages has been discarded

■ Unable to resolve Java Class

To identify if this is the case, run the following query in SQL*Plus as the FDM
Schema Owner:

select object_name, object_type, status
from user_objects
where status = ’INVALID’;

Included in the utilities directory with the FDM database scripts is a script to refresh
these objects, in the event that one or more of these objects becomes invalid. The
default location for this refresh script is the OFSA_INSTALL/dbs/<OFSA

Packages, Procedures, and Java Classes

16-66 Oracle Financial Services Installation and Configuration Guide

release>/utilities/stp subdirectory of your OFSA installation directory. OFSA_
INSTALL is the convention used to indicate where the OFSA software is installed in
your directory structure.

Financial Data Manager Packages
The Financial Data Manager packages consist of all packages, procedures and java
classes required by the OFS applications, excluding those required exclusively by
Market Manager.

To run the script, go to this directory location and login to SQL*Plus as the FDM
Schema Owner. Then type the following:

<SQL> @fdm_packages.sql

The fdm_packages.sql script prompts for the password of the FDM Schema Owner.
This is necessary for creating the Java Classes in the database.

This script creates the following log files in the OFSA_INSTALL/dbs/<OFSA
release>/log directory:

■ fdm_packages.log

■ pass_jar_status.log

■ rtm_jar.log

Review these logs for any errors.

Market Manager Packages
The Market Manager packages consist of packages and stored procedures required by
Market Manager, including some that are also required by FDM Administration.

To run the script, go to this directory location and login to SQL*Plus as the FDM
Schema Owner. Then type the following:

<SQL> @mm_packages.sql

This script creates the following log files in the OFSA_INSTALL/dbs/<OFSA
release>/log directory:

■ mm_packages.log

Review this log for any errors.

Views and Triggers

FDM Object Management 16-67

Views and Triggers
The FDM database includes both views and triggers. These objects are loaded into
the database by either the FDM database creation process or database upgrade
process. These objects are a required component of the FDM database definition.

It is possible for one or more of these objects to become INVALID. This can occur
during a database import, or because an object reference by the package, procedure
or java class no longer exists in the database. You or your users can receive Oracle
errors indicating this situation with such errors as:

■ ORA-04063: view has errors

■ Errors or incorrect behavior during insert, update or deleting on view
objects

To identify if this is the case, run the following query in SQL*Plus as the FDM
Schema Owner:

select object_name, object_type, status
from user_objects
where status = ’INVALID’;

Included in the utilities directory with the FDM database scripts is a script to refresh
these objects, in the event that one or more of these objects becomes invalid. The
default location for this refresh script is the OFSA_INSTALL/dbs/<OFSA
release>/utilities/views subdirectory of your OFSA installation directory. OFSA_
INSTALL is the convention used to indicate where the OFSA software is installed in
your directory structure.

Financial Data Manager Views
The Financial Data Manager views consist of all views required by the OFS
applications, excluding those required exclusively by Market Manager.

To run the script, go to this directory location and login to SQL*Plus as the FDM
Schema Owner. Then type the following:

<SQL> spool fdm_views.log
<SQL> @fdm_views.sql

Review the log file for any errors. Because the fdm_views.sql script drops and
re-creates views, the privileges for these objects need to be regranted. After the
script completes successfully, run the FDM Grant All procedure to regrant
privileges for these objects.

Seeded Data Tables and Ranges

16-68 Oracle Financial Services Installation and Configuration Guide

Market Manager Views
The Market Manager views consists of views required by Market Manager.

To run the script, go to this directory location and login to SQL*Plus as the FDM
Schema Owner. Then type the following:

<SQL> spool mm_views.log
<SQL> @mm_views.sql

Review the log file for any errors. After the script completes successfully, run the
Grant All procedure. Because the mm_views.sql script drops and re-creates views,
the privileges for these objects need to be regranted.

Seeded Data Tables and Ranges
Oracle defines seeded data as data:

■ Placed in the database to run the OFS applications properly

■ Composing the IDs shipped with the database

Seeded tables are designated as either:

■ FDM Metadata

■ Seeded Range Reserved

■ Seeded Unreserved

Data in Seeded Range Reserved tables is deleted and re-loaded every upgrade. Any
user data within the designated reserved range is therefore deleted by the upgrade
process. Data in tables designated as Seeded Unreserved is populated only once by
the database creation process. Users are allowed to enter their own data within the
Seeded Unreserved tables without restrictions. FDM Metadata tables are populated
by the database creation process, but are updated by the database upgrade process
for any rows pertaining to FDM Reserved Objects.

Note: All tables seeded by FDM are Reserved tables. The
designation of Seeded Unreserved indicates that users are allowed
to edit and modify the data that FDM seeds into these tables.

Seeded Data Tables and Ranges

FDM Object Management 16-69

FDM Metadata Seeded Tables
FDM Metadata tables are seeded by the database creation process and are updated
by the database upgrade process for any rows pertaining to FDM Reserved Objects.
Rows for FDM User Defined Objects are not modified by the database upgrade
process.

Seeded Range Reserved
The seeded data in the tables and ranges described in this section are deleted and
reloaded with the master seeded data during every upgrade within the designated
reserved data range.

Seeded Range Reserved tables consist of:

■ FDM and Market Manager Shared Tables

■ FDM Only Tables

■ Market Manager Only Tables

Range Reserved FDM and Market Manager Shared Tables
Shared FDM and Market Manager tables are present in both Market Manager and
Financial Data Manager installations.

OFSA_COLUMN_PROPERTIES OFSA_ROLE_ASSIGNMENT

OFSA_COLUMN_REQUIREMENTS OFSA_ROLES

OFSA_COLUMN_REQUIREMENTS_MLS OFSA_TABLES

OFSA_DB_OBJECT_PRIV_ASSIGNMENT OFSA_TABLES_MLS

OFSA_DB_SYS_PRIV_ASSIGNMENT OFSA_TAB_COLUMNS

OFSA_DESCRIPTION_TABLES OFSA_TAB_COLUMNS_MLS

OFSA_PRIVILEGE_RECIPIENTS OFSA_TABLE_CLASS_ASSIGNMENT

Caution: Data inserted into these tables within the designated
ranges by your users is deleted when a database upgrade is run.

Seeded Data Tables and Ranges

16-70 Oracle Financial Services Installation and Configuration Guide

Seeded Range Reserved FDM Only Tables
FDM Only Tables are used for Financial Data Manager. These tables are not present
in a Market Manager Standalone installation.

Table Name Reserved Range

AGGREGATION Entire Table

HARV_MSG_CLASS Entire Table

HARV_MSG_TEXT Entire Table

HARV_OBJECT_PRIVS Entire Table

HARV_ROLE Entire Table

HARV_SYSTEM_PRIVS Entire Table

OFSA_JOB_STATUS_CD Entire Table

OFSA_JOB_STATUS_MLS Entire Table

OFSA_MESSAGES_B Entire Table

OFSA_MESSAGES_MLS Entire Table

OFSA_MSG_SEVERITY_CD Entire Table

OFSA_MSG_SEVERITY_MLS Entire Table

Table Name Reserved Range

BANK_INIT Entire table

OFSA_ACCRUAL_BASIS_CD Entire table

OFSA_ACCRUAL_BASIS_MLS Entire table

OFSA_ACCUMULATION_TYPE_CD Entire table

OFSA_ACCUMULATION_TYPE_MLS Entire table

OFSA_ACTION_ASSIGNMENT WHERE protected_flg = 1

OFSA_ACTIONS Entire table

OFSA_ADJUSTABLE_TYPE_CD where adjustable_type_cd<500

OFSA_ADJUSTABLE_TYPE_MLS where adjustable_type_cd<500

Seeded Data Tables and Ranges

FDM Object Management 16-71

OFSA_AMORTIZATION_TYPE_CD where amortization_type_cd<1000

OFSA_AMORTIZATION_TYPE_MLS where amortization_type_cd<1000

OFSA_AMOUNT_TYPE_CD Entire table

OFSA_AMOUNT_TYPE_MLS Entire table

OFSA_APPLICATIONS Entire table

OFSA_APPLICATION_CONSTRUCTS Entire table

OFSA_APP_ASSIGNMENT WHERE protected_flg = 1

OFSA_APPS_INSTALL_GROUPS Entire table

OFSA_CALC_SOURCE_CD Entire table

OFSA_CALC_SOURCE_MLS Entire table

OFSA_CATALOG_OF_IDS where sys_id_num>79998 and sys_id_
num<100001

OFSA_COLUMN_PROPERTY_CD Entire table

OFSA_COLUMN_PROPERTY_MLS Entire table

OFSA_COL_PROPERTY_REQUIREMENTS WHERE protected_flg = 1

OFSA_COMPOUND_BASIS_CD Entire table

OFSA_COMPOUND_BASIS_MLS Entire table

OFSA_CONSOLIDATION_CD where consolidation_cd<=350

OFSA_CONSOLIDATION_MLS where consolidation_cd<=350

OFSA_CONSTRUCTS Entire table

OFSA_CONSTRUCT_ACTIONS Entire table

OFSA_CORRECTION_PROC_MSG_CD where error_code>=9000

OFSA_CORRECTION_PROC_MSG_MLS where error_code>=9000

OFSA_CURRENCIES where user_def_flg = 0

OFSA_CURRENCY_MLS where user_def_flg = 0

OFSA_CURRENCY_STATUS_CD Entire table

OFSA_CURRENCY_STATUS_MLS Entire table

OFSA_DATA_TYPE_DSC Entire table

Table Name Reserved Range

Seeded Data Tables and Ranges

16-72 Oracle Financial Services Installation and Configuration Guide

OFSA_DB_OBJ_PRIVS Entire table

OFSA_DETAIL_ELEM_B WHERE leaf_node<10000

OFSA_DETAIL_ELEM_MLS WHERE leaf_node<10000

OFSA_DETAIL_RECORD_CD Entire table

OFSA_DETAIL_RECORD_MLS Entire table

OFSA_DISCOUNT_RATE_METHOD_CD Entire table

OFSA_DISCOUNT_RATE_METHOD_MLS Entire table

OFSA_ESTIMATION_SMOOTHING_CD Entire table

OFSA_ESTIMATION_SMOOTHING_MLS Entire table

OFSA_EXCHANGE_RATE_STATUS_CD Entire table

OFSA_EXCHANGE_RATE_STATUS_MLS Entire table

OFSA_EXCHNG_RATE_CONV_TYPE_CD Entire table

OFSA_EXCHNG_RATE_CONV_TYPE_MLS Entire table

OFSA_EXCLUDED_PRIV_RECIPIENTS Entire table

OFSA_FBAL_BOOKING_CD Entire table

OFSA_FBAL_BOOKING_MLS Entire table

OFSA_FBAL_DIMENSION_CD Entire table

OFSA_FBAL_DIMENSION_MLS Entire table

OFSA_FBAL_METHOD_CD Entire table

OFSA_FBAL_METHOD_MLS Entire table

OFSA_FBAL_RATE_VOLUME_CD Entire table

OFSA_FBAL_RATE_VOLUME_MLS Entire table

OFSA_FBAL_RUNOFF_CD Entire table

OFSA_FBAL_RUNOFF_MLS Entire table

OFSA_FCAST_IRC_METHOD_CD Entire table

OFSA_FCAST_IRC_METHOD_MLS Entire table

OFSA_FCAST_XRATE_METHOD_CD Entire table

OFSA_FCAST_XRATE_METHOD_MLS Entire table

Table Name Reserved Range

Seeded Data Tables and Ranges

FDM Object Management 16-73

OFSA_FINANCIAL_ELEMENTS Entire table

OFSA_FIN_ELEM_SET Entire table

OFSA_FIN_ELEM_SET_DTL Entire table

OFSA_FORWARD_TYPE_CD Entire table

OFSA_FORWARD_TYPE_MLS Entire table

OFSA_FREQUENCY_UNIT_CD Entire table

OFSA_FREQUENCY_UNIT_MLS Entire table

OFSA_IDT_DATA_FILTER where sys_id_num>79998 and sys_id_
num<100001

OFSA_IDT_FORMULA where sys_id_num>79998 and sys_id_
num<100001

OFSA_IDT_REPORT where sys_id_num>79998 and sys_id_
num<100001

OFSA_IDT_REPORT_COLUMN where sys_id_num>79998 and sys_id_
num<100001

OFSA_IDT_ROLLUP where sys_id_num>79998 and sys_id_
num<100001

OFSA_IDT_SQL where sys_id_num>79998 and sys_id_
num<100001

OFSA_IDT_STRATIFICATION where sys_id_num>79998 and sys_id_
num<100001

OFSA_IDT_SUBTOTAL where sys_id_num>79998 and sys_id_
num<100001

OFSA_IDT_USER_DEFINED where sys_id_num>79998 and sys_id_
num<100001

OFSA_ID_FOLDERS WHERE protected_flg = 1

OFSA_ID_TYPE_CD Entire table

OFSA_ID_TYPE_FLAGS where application>=0

OFSA_ID_TYPE_MLS Entire table

OFSA_INSTALL_OBJECTS Entire table

OFSA_INSTRUMENT_TYPE_CD WHERE instrument_type_cd<500

OFSA_INSTRUMENT_TYPE_MLS WHERE instrument_type_cd<500

Table Name Reserved Range

Seeded Data Tables and Ranges

16-74 Oracle Financial Services Installation and Configuration Guide

OFSA_INTEREST_TIMING_TYPE_CD Entire table

OFSA_INTEREST_TIMING_TYPE_MLS Entire table

OFSA_INT_COMPONENT_TYPE_CD Entire table

OFSA_INT_COMPONENT_TYPE_MLS Entire table

OFSA_IRC_FMT_COMPOUND_B_REL Entire table

OFSA_IRC_FORMAT_CD Entire table

OFSA_IRC_FORMAT_MLS Entire table

OFSA_LANGUAGE_MAP Entire table

OFSA_LEAF_DESC where leaf_node<10000 and leaf_num_id=0

OFSA_LEVEL_DESC where sys_id_num>79998 and sys_id_
num<100001

OFSA_LOOKUP Entire table

OFSA_MLS Entire table

OFSA_MODIFY_ACTION_CD Entire table

OFSA_MODIFY_ACTION_MLS Entire table

OFSA_MULTIPLIER_CD Entire table

OFSA_MULTIPLIER_MLS Entire table

OFSA_NET_MARGIN_CD Entire table

OFSA_NET_MARGIN_MLS Entire table

OFSA_NODE_DESC where sys_id_num>79998 and sys_id_
num<100001

OFSA_OPTION_EXERCISE_CD Entire table

OFSA_OPTION_EXERCISE_MLS Entire table

OFSA_OPTION_TYPE_CD Entire table

OFSA_OPTION_TYPE_MLS Entire table

OFSA_PATTERN_TYPE_CD Entire table

OFSA_PATTERN_TYPE_MLS Entire table

OFSA_PAYMENT_TYPE_CD Entire table

OFSA_PAYMENT_TYPE_MLS Entire table

Table Name Reserved Range

Seeded Data Tables and Ranges

FDM Object Management 16-75

OFSA_PMT_PATTERN_TYPE_CD Entire table

OFSA_PMT_PATTERN_TYPE_MLS Entire table

OFSA_PP_CALC_METHOD_CD Entire table

OFSA_PP_CALC_METHOD_MLS Entire table

OFSA_PP_DIM_TYPE_CD Entire table

OFSA_PP_DIM_TYPE_MLS Entire table

OFSA_PP_HYPERCUBE_MAP Entire table

OFSA_PP_QUOTE_CD Entire table

OFSA_PP_QUOTE_MLS Entire table

OFSA_PP_RATE_TERM_CD Entire table

OFSA_PP_RATE_TERM_MLS Entire table

OFSA_PROCESSES Entire table

OFSA_PROCESS_ENGINE Entire table

OFSA_PROCESS_FILTER_TYPE_CD Entire table

OFSA_PROCESS_FILTER_TYPE_MLS Entire table

OFSA_PROCESS_PARTITION_CD Entire table

OFSA_PROCESS_PARTITION_MLS Entire table

OFSA_PROPERTY_COLUMNS WHERE protected_flg = 1

OFSA_PROPERTY_STP Entire table

OFSA_RATE_CAP_TYPE_CD Entire table

OFSA_RATE_CAP_TYPE_MLS Entire table

OFSA_RATE_CHG_ROUNDING_CD Entire table

OFSA_RATE_CHG_ROUNDING_MLS Entire table

OFSA_RATE_DATA_SOURCE_CD Entire table

OFSA_RATE_DATA_SOURCE_MLS Entire table

OFSA_RATE_FLOOR_TYPE_CD Entire table

OFSA_RATE_FLOOR_TYPE_MLS Entire table

OFSA_RECIPIENT_TYPE_DSC Entire table

Table Name Reserved Range

Seeded Data Tables and Ranges

16-76 Oracle Financial Services Installation and Configuration Guide

OFSA_REG_D_STATUS_CD Entire table

OFSA_REG_D_STATUS_MLS Entire table

OFSA_REPORT_LEAVES where report_leaves_id>79998 and report_
leaves_id<100001

OFSA_REPRICE_METHOD_CD Entire table

OFSA_REPRICE_METHOD_MLS Entire table

OFSA_RESULT_TYPE_CD Entire table

OFSA_RESULT_TYPE_MLS Entire table

OFSA_ROLL_FACILITY_CD Entire table

OFSA_ROLL_FACILITY_MLS Entire table

OFSA_ROW_NUM_ORDER Entire table

OFSA_SECURITY_PROFILES Entire table

OFSA_SEC_PROFILE_ASSIGNMENT Entire table

OFSA_SERVICING_AGENT_CD Entire table

OFSA_SERVICING_AGENT_MLS Entire table

OFSA_SETTLEMENT_TYPE_CD Entire table

OFSA_SETTLEMENT_TYPE_MLS Entire table

OFSA_SIC_CD Entire table

OFSA_SIC_MLS Entire table

OFSA_SMOOTHING_METHOD_CD Entire table

OFSA_SMOOTHING_METHOD_MLS Entire table

OFSA_SOLICIT_SOURCE_CD Entire table

OFSA_SOLICIT_SOURCE_MLS Entire table

OFSA_STOCH_RANDOM_SEQ_TYPE_CD Entire table

OFSA_STOCH_RANDOM_SEQ_TYPE_MLS Entire table

OFSA_STRIKE_TYPE_CD Entire table

OFSA_STRIKE_TYPE_MLS Entire table

OFSA_STRINGS_B Entire table

Table Name Reserved Range

Seeded Data Tables and Ranges

FDM Object Management 16-77

OFSA_STRINGS_MLS Entire table

OFSA_SYSTEM_PRIVILEGE_MAP Entire table

OFSA_TABLE_CLASSIFICATION Entire table

OFSA_TABLE_CLASSIFICATION_MLS Entire table

OFSA_TABLE_CLASS_PROPERTIES Entire table

OFSA_TABLE_PROPERTIES Entire table

OFSA_TABLE_USAGE Entire table

OFSA_TERM_TYPE_CD Entire table

OFSA_TERM_TYPE_MLS Entire table

OFSA_TM_FORMULA_ELEM Entire table

OFSA_TM_PROC_TYPE_CD Entire table

OFSA_TM_PROC_TYPE_MLS Entire table

OFSA_TP_ASSIGN_DATE_CD Entire table

OFSA_TP_ASSIGN_DATE_MLS Entire table

OFSA_TP_CALC_METHOD_CD Entire table

OFSA_TP_CALC_METHOD_MLS Entire table

OFSA_TP_CALC_MODE_CD Entire table

OFSA_TP_CALC_MODE_MLS Entire table

OFSA_TP_LEAF_DATA_SOURCE_CD Entire table

OFSA_TP_LEAF_DATA_SOURCE_MLS Entire table

OFSA_TP_OPT_COST_METHOD_CD Entire table

OFSA_TP_OPT_COST_METHOD_MLS Entire table

OFSA_TP_TARGET_BAL_CD Entire table

OFSA_TP_TARGET_BAL_MLS Entire table

OFSA_TRANSFORM_PROC_SCOPE_CD Entire table

OFSA_TRANSFORM_PROC_SCOPE_MLS Entire table

OFSA_TRANSFORM_SRC_TYPE_CD Entire table

OFSA_TRANSFORM_SRC_TYPE_MLS Entire table

Table Name Reserved Range

Seeded Data Tables and Ranges

16-78 Oracle Financial Services Installation and Configuration Guide

Seeded Range Reserved Market Manager Only Tables
Market Manager Only Tables are used only by Market Manager. These tables are
not present in an FDM Only installation.

OFSA_TS_MODEL_CD Entire table

OFSA_TS_MODEL_MLS Entire table

OFSA_USAGE_CD Entire table

OFSA_USAGE_MLS Entire table

OFSA_USER_GROUPS WHERE protected_flg = 1

OFSA_VERSION Entire table

OFSA_VIRTUAL_TABLES Entire table

OFSA_VIRTUAL_TABLES_MLS Entire table

PROF_INIT Entire table

PSRV_INIT Entire table

PUPD_RUN Entire table

PUPD_SERVER Entire table

PUPD_STEP_MASTER Entire table

PUPD_TAB Entire table

PUPD_TAB_COL Entire table

SALUTATION Entire table

SRV_INIT Entire table

STRIDX Entire table

STRMEM Entire table

STRUCT Entire table

Table Name Reserved Range

AGGREGATION_DETAILS Entire Table

AGGR_OPERATOR_DSC Entire Table

Table Name Reserved Range

Seeded Data Tables and Ranges

FDM Object Management 16-79

Seeded Unreserved
Following is a list of tables seeded by the database creation process that are not
protected against update. Users are allowed to insert, update, and delete rows in
these tables without restrictions.

Seeded Unreserved tables consist of:

ASSIGNMENT_METHOD_CD Entire Table

ASSIGNMENT_METHOD_MLS Entire Table

CAMPAIGN_CALC_SOURCE_CD Entire Table

CAMPAIGN_CALC_SOURCE_MLS Entire Table

CAMPAIGN_MEASURE_CD Entire Table

CAMPAIGN_MEASURE_MLS Entire Table

OFSA_BATCH_EVENTS_STATUS_CD Entire Table

OFSA_BATCH_EVENTS_STATUS_MLS Entire Table

OFSA_BATCH_EVENTS_TYPE_CD Entire Table

OFSA_BATCH_EVENTS_TYPE_MLS Entire Table

OFSA_COMPONENT_TYPE_CD Entire Table

OFSA_COMPONENT_TYPE_MLS Entire Table

OFSA_FINANCIAL_SCENARIO_CD Entire Table

OFSA_FINANCIAL_SCENARIO_MLS Entire Table

QUERY_ROLE_CD Entire Table

QUERY_ROLE_MLS Entire Table

QUERY_SOURCE_CD Entire Table

QUERY_SOURCE_MLS Entire Table

TRACKING_METHOD_CD Entire Table

TRACKING_METHOD_MLS Entire Table

TRACKING_STATUS_CD Entire Table

TRACKING_STATUS_MLS Entire Table

Table Name Reserved Range

Seeded Data Tables and Ranges

16-80 Oracle Financial Services Installation and Configuration Guide

■ FDM and Market Manager Shared Tables

■ FDM Only Tables

■ Market Manager Only Tables

Seeded Unreserved FDM and Market Manager Shared Tables
Shared FDM and Market Manager tables are present in both Market Manager and
Financial Data Manager installations.

Seeded Unreserved FDM Only Tables
FDM Only Tables are used for Financial Data Manager. These tables are not present
in a Market Manager Standalone installation.

CYCLE HARV_TAB

HARV_CONFIG HARV_TAB_COL

HARV_IND JOB_PARMS

HARV_IND_COL

DEF OFSA_ISSUER_MLS

DEFMAP OFSA_LIEN_POSITION_CD

ISEG OFSA_LIEN_POSITION_MLS

OFSA_CATALOG_OF_LEAVES OFSA_LIQUIDITY_CLASS_CD

OFSA_CMO_TRANCHE_CD OFSA_LIQUIDITY_CLASS_MLS

OFSA_CMO_TRANCHE_MLS OFSA_LOAN_PROPERTY_TYPE_CD

OFSA_COLLATERAL_CD OFSA_LOAN_PROPERTY_TYPE_MLS

OFSA_COLLATERAL_MLS OFSA_MARKET_SEGMENT_CD

OFSA_COLLATERAL_STATUS_CD OFSA_MARKET_SEGMENT_MLS

OFSA_COLLATERAL_STATUS_MLS OFSA_MORTGAGE_AGENCY_CD

OFSA_COLLATERAL_SUB_TYPE_CD OFSA_MORTGAGE_AGENCY_MLS

OFSA_COLLATERAL_SUB_TYPE_MLS OFSA_OCCUPANCY_CD

OFSA_COLLATRL_DISCHRG_TYPE_CD OFSA_OCCUPANCY_MLS

OFSA_COLLATRL_DISCHRG_TYPE_MLS OFSA_OVERDRAFT_PROTECTION_CD

Seeded Data Tables and Ranges

FDM Object Management 16-81

Seeded Unreserved Market Manager Only Tables
Market Manager Only Tables are used only by Market Manager. These tables are
not present in an FDM Only installation.

OFSA_COMMITMENT_TYPE_CD OFSA_OVERDRAFT_PROTECTION_MLS

OFSA_COMMITMENT_TYPE_MLS OFSA_OWNERSHIP_CD

OFSA_CONFORMANCE_CD OFSA_OWNERSHIP_MLS

OFSA_CONFORMANCE_MLS OFSA_PLEDGED_STATUS_CD

OFSA_CONTROL OFSA_PLEDGED_STATUS_MLS

OFSA_CREDIT_RATING_CD OFSA_PRIVATE_MTG_INSURER_CD

OFSA_CREDIT_RATING_MLS OFSA_PRIVATE_MTG_INSURER_MLS

OFSA_CREDIT_STATUS_CD OFSA_PROCESS_DATA_SLICES

OFSA_CREDIT_STATUS_MLS OFSA_PROCESS_DATA_SLICES_DTL

OFSA_DIRECT_IND_CD OFSA_PROCESS_ID_RUN_OPTIONS

OFSA_DIRECT_IND_MLS OFSA_PROCESS_ID_STEP_RUN_OPT

OFSA_DYN_TAB_CLASS_PRIV_ASSIGN OFSA_PRODUCT_TYPE_CD

OFSA_EXIST_BORROWER_CD OFSA_PRODUCT_TYPE_MLS

OFSA_EXIST_BORROWER_MLS OFSA_PURPOSE_CD

OFSA_FISCAL_YEAR_INFO OFSA_PURPOSE_MLS

OFSA_GEOGRAPHIC_LOC_CD OFSA_PUT_CALL_CD

OFSA_GEOGRAPHIC_LOC_MLS OFSA_PUT_CALL_MLS

OFSA_GUARANTOR_RELATION_CD OFSA_TABLE_EXTENTS

OFSA_GUARANTOR_RELATION_MLS OFSA_TABLE_STORAGE_DEFAULTS

OFSA_HELD_FOR_SALE_CD OFSA_UPGRADE_LOG

OFSA_HELD_FOR_SALE_MLS PUPD_IND

OFSA_INDEX_STORAGE_DEFAULTS PUPD_IND_COL

OFSA_INTEGRATOR_CONFIG PUPD_RUN_PREPOST

OFSA_ISSUER_CD

Seeded Data Tables and Ranges

16-82 Oracle Financial Services Installation and Configuration Guide

CONTACT_METDHOD_CD INCENTIVE_TYPE_MLS

CONTACT_METHOD_MLS OFSA_MM_SYSTEM_CODE_VALUES

INCENTIVE_TYPE_CD

FDM Leaf Management 17-1

17
FDM Leaf Management

In the context of Oracle Financial Services (OFS) applications, a Leaf Column is an
column that provides data dimensionality. Leaf Columns enable data categorization
via hierarchies (termed Tree Rollups) in the OFS applications. They are special
columns within Oracle Financial Data Manager (FDM) that are used for a variety of
purposes within the OFS applications, including Oracle Performance Analyzer,
Oracle Risk Manager, and Oracle Transfer Pricing processing operations. Generally,
Leaf Columns are defined for use with Instrument and client data tables, including
the LEDGER_STAT table.

This chapter provides information on how to manage Leaf Columns within the
FDM database environment. Specific topics in this chapter include:

■ Seeded Leaf Columns

■ Leaf Registration

■ Managing Leaf Values

Seeded Leaf Columns
Included with the FDM database are four Leaf Columns. These columns are:

■ Common Chart of Account ID (common_coa_id)

■ FInancial Element ID (financial_elem_id)

■ General Ledger Account ID (gl_account_id)

■ Organizational Unit ID (org_unit_id)

Caution: Do not unregister any of the seeded Leaf Columns. To do
so may cause the OFS applications to function improperly.

Leaf Registration

17-2 Oracle Financial Services Installation and Configuration Guide

Leaf Registration
Leaf Registration refers to the identification of new column names as Leaf Columns.
Once a Leaf Column is registered in the FDM metadata, that column name becomes
available for OFS application specific operations, such as processing, or creating
business assumption information.

FDM enables you to register any column to be a Leaf Column, as long as it meets
certain requirements. These requirements are discussed in this section. If a column
does not meet the requirements, the FDM Administration prevents the Leaf
Registration operation with an error message.

Types of Leaf Columns
Leaf Columns are designated as one of the following types:

■ Ledger Only

■ All (also referred to as Both Instrument and Ledger)

A Ledger Only Leaf Column is required to exist only on the LEDGER_STAT table
(and a few other application specific internal objects). The seeded Leaf Column
Financial Element ID is designated as a Ledger Only leaf. It is unlikely that you will
ever need to register any additional columns as Ledger Only.

The more common Leaf Type for user-defined Leaf Columns is that of type All (also
referred to as Both Instrument and Ledger). An All Leaf is required to exist on all
client data objects that are used for OFS processing operations, such as Allocation,
Transfer Pricing, or Risk Manager processing. Generally, this list of objects includes
all instrument and account tables registered in the FDM metadata.

Note: The concept of Leaf Registration is a separate, but related
concept to that of registering a column for an object as FDM Data
Type LEAF. In order to register a new Leaf Column, it must first be
registered as a column of FDM Data Type LEAF on a designated set
of tables.

Note: The maximum number of user-defined Leaf Columns that
can be registered on the LEDGER_STAT table is seven. This is in
addition to the four FDM seeded Leaf Columns.

Leaf Registration

FDM Leaf Management 17-3

Key and Non-key Leaf Columns
A Key Leaf Column is a column that is a component of the primary key definition
for certain objects on which it exists, such as the LEDGER_STAT table. This does not
mean that the column is part of the primary key definition for all objects on which it
exists. Rather, the column is part of the primary key for a specific list of objects
identified by Table Classification.

A Non-key Leaf Column is never a component of such primary key definitions.

Registering a Leaf Column
Registering a new Leaf Column is a process. This process requires the following
steps:

1. Add the column to required Objects

2. Re-register affected Objects

3. Modify Unique indexes (Key Leaf Columns only)

4. Assign the Processing Key Column Property (Key Leaf Columns only)

5. Register the Leaf Column

Each of these steps is discussed in detail.

Step 1: Adding the column to required Objects
FDM requires that Leaf Columns exist on a specific set of tables and views, based
upon the Table Classification assignments in the database, prior to being able to
register the new columns as a Leaf Column for the database. You can add the new
column to these objects manually, or use the ADD_LEAF procedure. See Chapter 21,
"FDM Utilities".

Note: FDM provides a utility script for performing the Add
column and Re-register Objects steps (steps 1 and 2). This utility
script eliminates the need for manually performing these tasks for
any objects that are Tables. However, any registered objects that are
Views still need to be re-created manually with the new Leaf
Column. Refer to Chapter 21, "FDM Utilities" for more information.

Leaf Registration

17-4 Oracle Financial Services Installation and Configuration Guide

Adding the Column using the ADD_LEAF Procedure
FDM provides an ADD_LEAF procedure to automatically add the new Leaf
Column to all required tables (views are not affected by this procedure - views must
always be dropped and re-created manually to include the new column).

The utilities directory in the FDM server package includes supporting scripts for
this procedure. The run_add_leaf script prompts you for the parameters required by
the ADD_LEAF procedure. To execute this procedure, login to SQL*Plus as the
FDM Schema Owner and type the following command from the utilities/add_leaf
directory:

@run_add_leaf

This script prompts for the Leaf Column Name, Display Name, Leaf Type and DBF
Name. Once valid parameters are entered, the script calls the ADD_LEAF
procedure to add the new column as NUMBER(14) to all required tables (based
upon Table Classification assignments). Refer to Chapter 17, "FDM Leaf
Management"for more information regarding this script and the ADD_LEAF
procedure.

Adding the Column Manually
Adding the new column manually involves executing Alter table commands for
each table of the specified Table Classifications. For tables, use the Alter table add
column syntax. For views, you must drop and re-create the view so that it has the
new column in its definition.

The list of objects requiring the new column is based upon Table Classification
assignments. For the Leaf Type = Both Instrument and Ledger, tables with the
following Table Classification assignments are altered:

Note: The ADD_LEAF procedure does not modify views.
Manually drop and re-create any views with the designated Table
Classification assignments so that they include the new Leaf
Column.

Table Classification CD Description

50 Ledger Stat

200 TP Cash Flow

210 TP Non-Cash Flow

Leaf Registration

FDM Leaf Management 17-5

To identify the all of the objects for these Table Classifications, execute the following
statement in SQL*Plus:

SELECT distinct(table_name)
FROM ofsa_table_class_assignment
WHERE table_classification_cd in (50, 200, 210, 300, 310, 351, 360, 370);

For Leaf Columns of Registration Type Ledger Only, the Leaf Column must exist on
each object registered for the following Table Classifications:

Execute the following statement in SQL*Plus to identify the objects to be modified:

SELECT distinct(table_name)
FROM ofsa_table_class_assignment
WHERE table_classification_cd in (352);

For each table identified by the SQL statements, add the new Leaf Column as
NUMBER(14).

300 Transaction Profitability

310 Instrument Profitability

351 All B Leaves

360 RM Standard

370 TP Option Costing

Note: The Leaf Objects reports provided with the FDM Discoverer
Standard Reports displays the objects that must be modified for a
column to be registered as an All Leaf or a Ledger Only Leaf.

Table Classification CD Description

352 All L Leaves

Table Classification CD Description

Leaf Registration

17-6 Oracle Financial Services Installation and Configuration Guide

For tables, use the following syntax:

alter table table_name
add column column_name NUMBER(14);

For example, if you are adding a new TAX_ID column to the DEPOSITS table, use
the following syntax:

alter table deposits
add column tax_id number(14);

For views, you must drop and re-create the view so that it includes the new column
name as part of its definition.

Step 2: Re-register Objects
Once you have added the new column to all of the required objects, you must
re-register these objects in FDM Administration. The ADD_LEAF procedure
performs this step automatically for you (except for views), so you do not need to
do it again if you used that procedure to add the column to your objects. If you did
not use the ADD_LEAF procedure to add the column, you must manually
Re-register the new column for all affected Objects. To do this, use the Re-register
Object Wizard in FDM Administration to identify the new column for each object to
which it was added in step 1. Assign the FDM Data Type LEAF to the new column
for each object.

Note: Leaf Columns must be defined as NUMBER(14). FDM does
not support columns of any other definition as Leaf Columns.

Note: If you used the ADD_LEAF procedure to add the new Leaf
Column to your tables, you do not need to re-register any of the
tables. However, you need to re-register any views (of the specified
Table Classification assignments) because these were dropped and
re-created manually in Step 1.

Leaf Registration

FDM Leaf Management 17-7

For more information regarding Object Registration and Re-registration, refer to the
Oracle Financial Data Manager Administration Guide.

Step 3: Modify Unique Indexes
For Leaf Columns designated of type Key FDM requires that the Leaf Column is
added as a component of the unique index for objects registered for the following
Table Classifications:

Use the following statement in SQL*Plus:

SELECT table_name, index_name
FROM user_indexes
WHERE uniqueness = ’UNIQUE’
AND table_name in
(SELECT C.table_name FROM ofsa_table_class_assignment C,
user_tab_columns U
WHERE C.table_name = U.table_name
AND U.column_name= :new_leaf
AND C.table_classification_cd = 350);

:new_leaf is the name of the new Leaf Column and must be in uppercase.

Note: The new column must be registered as FDM Data Type
LEAF for all of the required objects.

Table Classification CD Description

350 Primary Key All Leaves

Leaf Registration

17-8 Oracle Financial Services Installation and Configuration Guide

Drop the existing unique indexes for the identified tables, and re-create with the
new column as an index component.

Step 4: Assign the Processing Key Column Property
For Leaf Columns of type Key, the Processing Key Column Property needs to be
associated to the new column for each object registered in step 3. Only those objects
where the column was added to the unique index are affected. Add the Processing
Key Column Property to the column for each of these objects.

For more information regarding adding Column Property assignments, refer to the
Oracle Financial Data Manager Administration Guide.

Step 5: Register the Leaf Column
Once all of the requirements are met, the new column can be registered as a Leaf
Column. To complete the registration process, use the Leaf Registration Wizard in
FDM Administration.

For more information regarding the Leaf Registration Wizard, refer to the Oracle
Financial Data Manager Administration Guide.

When you register a Leaf Column, a row is automatically inserted into OFSA_
COLUMN_REQUIREMENTS for the column. This table identifies the required
characteristics for the column. A row is also inserted into OFSA_PROPERTY_
COLUMNS identifying the column as part of the Portfolio Table Classification.

Troubleshooting Leaf Registration
The Register - Leaf Column Wizard in FDM Administration validates that the
specified Leaf column name is appropriately setup in the FDM database and
Metadata. This validation checks the following conditions:

Caution: The unique index for these tables must the same as the
existing index, with only the new Leaf Column added as an
additional component. Add the new Leaf Column as the last
column name in the unique index. If the unique index is not
re-created correctly for these tables, some OFS operations, such as
Performance Analyzer Allocations, do not function properly.

Leaf Registration

FDM Leaf Management 17-9

Leaf Column already identified as a Portfolio Column
FDM Administration verifies that the Leaf Column Name is not already entered in
OFSA_COLUMN_REQUIREMENTS and OFSA_PROPERTY_COLUMNS as a
Portfolio column.

OFSA_COLUMN_REQUIREMENTS stores the characteristics for Reserved columns
(both FDM Reserved columns and user-defined Portfolio columns). The Leaf
Registration Wizards attempts to insert the characteristics for the new column name
into this table. OFSA_PROPERTY_COLUMNS identifies column names as Portfolio
columns. If a record already exists in either OFSA_COLUMN_REQUIREMENTS or
OFSA_PROPERT_COLUMNS for the new Leaf column name, FDM Administration
reports an error.

In this situation, delete the existing entries in OFSA_COLUMN_REQUIREMENTS
and OFSA_PROPERTY_COLUMNS for the specified column name. These existing
records might have been inserted in a prior Leaf Registration for the specified
column name (which was not completely undone), or it might be a designated
Portfolio column. In either case, FDM Administration inserts a new entry for the
column name during Leaf Registration, so it is safe to delete the existing entry.

Leaf Column is not registered as FDM Data Type LEAF
This error occurs when the Leaf Column is not registered correctly on all of the
required objects. To identify which objects for which the Leaf column is not
properly registered, execute one of the following SQL statements - depending upon
the specified Table Classification list in the error message text:

For Ledger Only Leaves:

select table_name from ofsa_table_class_assignment
where table_classification_cd in (352)
and table_name not in (select table_name from ofsa_tab_columns
where column_name = leaf_column_name
and ofsa_data_type_cd = 10);

For B (All) Leaves:

select table_name from ofsa_table_class_assignment
where table_classification_cd in (50, 200, 210, 300, 310, 351, 360, 370)
and table_name not in (select table_name from ofsa_tab_columns
where column_name = leaf_column_name
and ofsa_data_type_cd = 10);

Leaf Registration

17-10 Oracle Financial Services Installation and Configuration Guide

To resolve this error, register the Leaf Column on each identified object as FDM
Data Type = LEAF in FDM Administration.

Column not part of the Process Key
This error occurs when the Leaf Column is not designated with the Processing Key
Column Property for objects of the specified Table Classifications. To identify which
objects are not assigned properly, execute the following SQL:

select table_name from ofsa_table_class_assignment
where table_classification_cd in (350)
and table_name not in (select table_name from ofsa_column_properties
where column_name = leaf_column_name
and column_property_cd = 15);

To resolve this error, assign the Processing Key Column Property to the specified
Leaf Column name for each identified object in FDM Administration.

Unregistering a Leaf Column
Unregistering a Leaf Column does not unregister the column from any objects.
Rather, it removes the identification of the column as being a Leaf Column. Once a
Leaf Column is unregistered, it is not available for the Leaf Column operations
within the OFS applications.

In order to unregister a Leaf Column, you first must remove any Processing Key
Column Property assignments for the column name on any tables of Table
Classification 350. To do this, use the Column Properties tab page within FDM
Administration. The list of tables to be modified in this manner is the same list as in
Step 4 (that is, the same objects for which the Processing Key Column Property
assignment was modified).

Next, delete the entry from OFSA_COLUMN_REQUIREMENTS for the
unregistered Leaf Column. OFSA_COLUMN_REQUIREMENTS stores the required
FDM Data Types for all registered columns. Each Leaf Column has an entry in this
table. When you unregister a Leaf Column, you need to remove it from this table so
that FDM Administration does not default the FDM Data Type to LEAF for any
newly registered columns of the same name. To do this, execute the following SQL
statement:

delete from ofsa_column_requirements
where column_name = :leaf_column;

Managing Leaf Values

FDM Leaf Management 17-11

Once the column is deleted from this table, use the Unregister button in FDM
Administration to unregister the Leaf Column.

One additional step for unregistering a Leaf Column is to update the FDM Data
Type for all objects on which the column is registered. The FDM Data Type should
be updated to something other than LEAF. To do this, update the FDM Data Type
field in the Columns tab under FDM Objects within the FDM Administration
application.

Managing Leaf Values
A Leaf Value (also referred to as Leaf Node) is an individual entry for a Leaf
Column. Leaf Values constitute the domain of valid values for any Leaf Column.

Users use the Leaf Setup screen within the OFS applications to add new Leaf Values
for any Leaf Column.

Use the Synchronize Instruments procedure (described in Chapter 21, "FDM
Utilities") to add a default Leaf Value entry for any unidentified entries in your
Instrument objects. This procedure is particularly useful after you have loaded a
new set of data into your Instrument tables.

Caution: Prior to unregistering a Leaf Column, you must modify
the unique indexes and Column Property assignments for the
affected Objects as appropriate.

Managing Leaf Values

17-12 Oracle Financial Services Installation and Configuration Guide

FDM Database Performance Management 18-1

18
FDM Database Performance Management

This chapter provides information about the duties of the Database Administrator
to sustain the performance of the Oracle Financial Data Manager (FDM) database
environment.

The following, specific topics are covered in this chapter:

■ Tuning the FDM Database

■ Performance Monitoring with BSTAT/ESTAT

■ Index Management

■ Managing Partitioned Tables and Indexes

■ Rollback Segment Sizing and Management

Tuning the FDM Database

18-2 Oracle Financial Services Installation and Configuration Guide

Tuning the FDM Database
Tuning the FDM database can be a lengthy process, and, with many of the new
Oracle features, also complex.

The tuning process, in general, follows these steps:

1. Identify the Oracle Financial Services Applications (OFSA) job types that your
organization uses.

The various job types are defined in the table in this section.

2. For each job type, time runs for a series of NumProcesses settings.

3. Based on the results, determine the appropriate setting per application.

It is recommended that for each process type, start with a NumProcesses setting of
1, and continue to double the setting until it is equal to the number of processors
available on the application server for CPU bound jobs, and equal to the number of
processors available on the database server for I/O bound jobs.

Generally, as the NumProcesses setting is increased, you can expect performance
improvements up to a certain point. After that, processing times level off and then
start increasing. Testing has shown that for all applications, the point at which
processing time starts to increase occurs after the NumProcesses setting has
exceeded the number of processors on the machine. Also, as the NumProcesses
setting approaches the number of processors, the performance improvements are
minimal.

Special considerations need to be made when multiple OFSA jobs are run at the
same time. Different types of jobs use resources differently. You may want to look
into a scheduling tool to help you schedule dissimilar jobs to run at different times.

Besides the OFSA multiprocessing model, the database can be tuned for optimal
performance by following these standard guidelines.

■ Test the application and gather trace files for specific processes. Add and
remove indexes as needed to support customizations.

■ Review and modify initialization parameters for a precise database
configuration. The primary initialization parameters used to tune the OFSA
database are defined in Chapter 10, "FDM Database Installation".

Note: To achieve optimal performance, you may need to change
the NumProcesses settings for applications at different stages in the
production cycle.

Tuning the FDM Database

FDM Database Performance Management 18-3

■ Partition primary (instrument) tables and indexes to enable I/O balancing.

■ Review and modify default physical attributes (next extent, ini trans, free lists,
degree, and so forth).

Tuning is usually a series of trade-offs. Once you have determined the bottlenecks,
you may have to sacrifice in some areas to achieve your desired results. For
example, if I/O is a problem, you may need to purchase more memory or more
disks. If a purchase is not possible, you may have to limit the concurrency of the
system. However, if you have clearly defined goals for performance, then the
decision on what you need to relinquish to attain higher performance is simpler
because you have identified the key areas to consider.

The following table lists the OFSA jobs by application and identifies whether the job
is usually database bound or OFSA bound.

Application Job Type
Generic
Job Type

OFSA/DB
Bound

MP
Enabled Comments

Balance & Control Cash Flow Edits Row by
Row

DB or OFSA Yes If a large number of
corrections need to be done,
this may become OFSA
bound

Balance & Control Row by Row Row by
Row

DB or OFSA Yes As the number of rules in the
correction processing ID
increase, the process may
become OFSA bound

Balance & Control Bulk Bulk DB Yes

Performance Analyzer Straight Ledger Row by
Row

DB Yes No percent or table ID.
Ledger_Stat reading is MP
enabled, Ledger_Stat writing
is not.

Performance Analyzer Percent Distribution Row by
Row

DB Yes

Performance Analyzer Table ID Row by
Row

DB Yes

Performance Analyzer Lookup Table ID Bulk DB Yes

Performance Analyzer Detail RBR/Bulk DB Yes Row by Row for Ledger_Stat
allocation, update to detail
table is bulk

Transfer Pricing Rate Migration Bulk DB Yes

Transfer Pricing Bulk Transfer Pricing Bulk DB Yes

Transfer Pricing Non-Cash Flow
Transfer Pricing

Row by
Row

DB Yes

Performance Monitoring with BSTAT/ESTAT

18-4 Oracle Financial Services Installation and Configuration Guide

Performance Monitoring with BSTAT/ESTAT
One of the most important responsibilities for a DBA is ensuring that the Oracle
database is properly tuned. Oracle RDBMS is highly tunable and enables the
database to be monitored and adjusted to increase its performance. This section
discusses how to make use of the utility called BSTAT/ESTAT to monitor
performance within the Oracle database system.

Oracle provides two SQL scripts, called utlbstat.sql and utlestat.sql, that are used to
capture a snapshot of system-wide, database performance statistics. These scripts
have been renamed from BSTAT/ESTAT under Oracle6. In this chapter, the utility is
referred to as BSTAT/ESTAT but the actual scripts are prefixed by utl.

On UNIX platforms, the scripts reside in the $ORACLE_HOME/rdbms/admin
directory.

BSTAT Tables and Views
Utlbstat.sql creates a set of tables and views in your sys account. These contain a
beginning snapshot of database performance statistics. The table names, which are
listed in the following table, include the word begin to indicate beginning statistics.

Transfer Pricing Cash Flow Transfer
Pricing

Row by
Row

OFSA Yes

Transfer Pricing Ledger_Stat Migration Row by
Row

DB Yes

Risk Manager Detail Processing
(Current position, Gap,
Market Value)

Row by
Row

OFSA Yes All processing except
Formula Leaves and Auto
Balancing

Risk Manager Formula Leaves Row by
Row

OFSA No

Risk Manager Auto Balancing Row by
Row

OFSA No

Transformation Ledger Row by
Row

DB Yes Dimension Filtering
(aggregation) and complex
OFSA filters affect
performance

Transformation Risk Manager Row by row DB Yes Dimension Filtering
(aggregation) affects
performance

Transformation Roll up Other DB No

Application Job Type
Generic
Job Type

OFSA/DB
Bound

MP
Enabled Comments

Performance Monitoring with BSTAT/ESTAT

FDM Database Performance Management 18-5

Additionally, utlbstat.sql creates a set of tables that contain the ending snapshot of
database performance statistics. The table names, which are listed in the following
table, include the word end to indicate ending statistics.

ESTAT Tables and Views
Utlestat.sql populates the end statistics tables and creates a set of tables in your sys
account, which contain the difference between the beginning statistics and the
ending statistics. The table names are listed as follows:

View/Table Name Description

stats$begin_dc Dictionary Cache Statistics from v$rowcashe

stats$begin_event System Wide Wait Statistics from v$system_event

stats$begin_file Table of File I/O Statistics from stats$file_view

stats$begin_latch Latch Statistics from v$latch

stats$begin_lib Library Cache Statistics from v$librarycache

stats$begin_roll Rollback Segment Statistics from v$rollstat

stats$begin_stats General System Statistics from v$sysstat

stats$begin_view View of File I/O Statistics from v$filestat, v$datafile, ts$, file$

stats$dates Table containing beginning vdate and time

Table Name Description

stats$end_d Dictionary Cache Statistics from v$rowcache

stats$end_event System Wide Wait Statistics from v$system_event

stats$end_file Table of File I/O Statistics from stats$file_view

stats$end_latch Latch Statistics from v$latch

stats$end_lib Library Cache Statistics from v$librarycache

stats$end_roll Rollback Segment Statistics from v$rollstat

stats$end_stats General System Statistics v$sysstat

Performance Monitoring with BSTAT/ESTAT

18-6 Oracle Financial Services Installation and Configuration Guide

Finally, utlestat.sql creates a report in the current directory with the database
performance statistics. The report is divided into the following sections:

■ Library Cache Statistics

■ System-Wide Statistics Totals

■ System Event Statistics

■ Average Length of Dirty Buffer Write Queue

■ File I/O Statistics

■ Tablespace I/O Statistic Totals

■ Willing-To-Wait Latch Statistics

■ No_Wait Latch Statistics

■ Rollback Segment Statistics

■ Init.ora Parameters

■ Data Dictionary Cache Statistics

■ Date/Time

Executing BSTAT/ESTAT
Complete the following steps to execute BSTAT/ESTAT:

1. Determine database activity to be monitored.

Table Name Description

stats$dc Dictionary Cache statistics

stats$event System Wide Wait statistics

stats$files File I/O statistics

stats$latches Latch statistics

stats$lib Library Cache statistics

stats$roll Rollback Segment statistics

stats$stats General System statistics

stats$dates Table containing ending date and time

Performance Monitoring with BSTAT/ESTAT

FDM Database Performance Management 18-7

2. Move to the utlbstat.sql/utlestat.sql directory.

3. Log in to SQL*Plus as the SYS user.

4. Issue the following command:

@utlbstat

5. Run application to be monitored.

6. Issue the following command:

@utlestat

Run BSTAT/ESTAT only after your database has been running for a period of time.
If you run BSTAT/ESTAT immediately after database startup, the buffer cache is not
loaded and the statistics generated are not valid for database performance analysis.

If the database is shutdown in the middle of executing BSTAT/ESTAT the statistics
are no longer valid because the V$ tables are initialized at shutdown and startup. If
negative values are present for statistics other than Current_ statistics, the database
has been shutdown and started during the execution of BSTAT/ESTAT.

In order for all of the statistics to be populated the init.ora parameter TIMED_
STATISTICS must be set to true. Setting this parameter causes slight performance
degradation but is needed for the _Time_ statistics.

Performance Monitoring with BSTAT/ESTAT

18-8 Oracle Financial Services Installation and Configuration Guide

Depending on the type of applications that you are running, you may find it
beneficial to start the database with different init.ora files. To determine if this is
beneficial, run BSTAT/ESTAT for different applications. It is also beneficial to run
BSTAT/ESTAT at different times of the day, both when the database is performing
and when it is not performing. One set of statistics can then be used as a base and
compared to other sets of statistics.

The following table provides two examples of when you might use BSTAT/ESTAT.

The report generated when estat.sql is executed is called report.txt and is written to
the current directory. This is the directory from which you executed SVRMGRL.
Make sure that you have WRITE permissions to this directory or else the report will
not be created and you will lose the statistics. This is because all the temporary
tables would have been dropped when you ran estat.

Library Cache Statistics
Library Cache Statistics are generated from the table v$librarycache. The library
cache contains shared SQL and PL/SQL areas.

The following table lists the column headers for this section of the report and a
description of each header.

Methodology Activity Execution

Method 1 Several batch jobs are run
every evening

Execute utlbstat.sql before the batch
jobs are launched and execute
utlestat.sql after the batch jobs are
complete.

Method 2 Maximum processes access
database from 1 - 4p.m.

Execute utlbstat.sql at 12:59p.m. and
utlestat.sql at 4:01p.m.

Column Header Description

Library Name of the Library cache namespace

Gets Number of times the system request handles library objects belonging to
this namespace

Gethitratio Number of gethits divided by gets

Performance Monitoring with BSTAT/ESTAT

FDM Database Performance Management 18-9

Library cache namespace can be one of the following:

■ SQL AREA

■ TABLE/PROCEDURE

■ BODY

■ TRIGGER

■ INDEX

■ CLUSTER

■ OBJECT

■ PIPE

Rows with the following namespace reflect library cache activity for SQL statements
and PL/SQL blocks.

■ SQL AREA

■ TABLE/PROCEDURE

■ BODY

■ TRIGGER

Rows with any other namespace reflect library cache activity for object definitions
that Oracle uses for dependency maintenance.

Gethitratio is the number of gethits divided by gets from v$librarycache where
gethits are the number of times the handles are already allocated in the cache.
Values close to 1 indicate that most of the handles the system has tried to get are
cached.

Pins indicate the total number of times all SQL statements, PL/SQL blocks and
object definitions were accessed for execution. A high pin rate is desirable.

Pins Number of times an item in the library cache is executed

Pinhitratio Number of pinhits divided by pins

Reload Number of library cache misses on execution steps

Invalidations Number of times that non-existent library objects (like shared SQL
areas) have been invalidated

Column Header Description

Performance Monitoring with BSTAT/ESTAT

18-10 Oracle Financial Services Installation and Configuration Guide

Pinhitratio is the number of pinhits divided by pins from v$librarycache where
pinhits are the number of times that objects the system is pinning and accessing are
already allocated and initialized in the cache. Values close to 1 indicate that most of
the objects the system has tried to pin and access are cached.

Reloads indicate the number of pins that resulted in library cache misses, causing
Oracle to implicitly reparse a statement or block or reload an object definition
because it had aged out of the library cache. An example of a reload is the number
of times library objects have to be reinitialized and reloaded with data because they
have been aged out or invalidated.

Total reloads should be near 0. If the ratio of reloads to pins is more than 1%, then
you should reduce these library cache misses through allocating additional memory
for the library cache. To increase the amount of memory available to the library
cache, increase the value of SHARED_POOL_SIZE. To take advantage of the
additional memory available for SQL areas, you may also need to increase OPEN_
CURSORS.

System-Wide Statistics Totals
System-wide Statistic Totals are generated from the table v$sysstat, which contains
general database system statistics.

The following table lists the column headers for this section of the report and a
description of each header.

Per Logon is always based on at least one logon because the estat script logs on as
internal.

Note: Ensure that the increase in the SHARED_POOL_SIZE does
not increase the SGA size to such an extent that it causes paging
and swapping to occur on the machine.

Column Header Description

Statistic Name of the system-wide statistic

Total Total number of statistic operations

Per Trans Total number of statistic operations/user commits

Per Logon Total number of statistics operations per logon

Performance Monitoring with BSTAT/ESTAT

FDM Database Performance Management 18-11

Outlined are several of the system-wide statistics that can be used to analyze
database performance. Where possible, the init.ora parameters that influence these
statistics are discussed.

DBWR Checkpoints
DBWR Checkpoints is the number of checkpoints messages that were sent to DBWR
and not necessarily the total number of actual checkpoints that took place. During a
checkpoint, there is a slight decrease in performance because data blocks are being
written to disk, which causes I/O. If the number of checkpoints is reduced, the
performance of normal database operations improves but recovery after instance
failure is slower.

To reduce the number of checkpoints, increase the init.ora parameter LOG_
CHECKPOINT_INTERVAL. If this parameter is set to a size (bytes) larger than the
size of the redo log, a checkpoint is performed during each log switch. To increase
the number of checkpoints and decrease database recovery time decrease the LOG_
CHECKPOINT_INTERVAL parameter.

LOG_CHECKPOINT_TIMEOUT determines the amount of time to pass before the
next checkpoint. Set this to 0 to disable time-based checkpoints.

Cluster Key Scan Block Gets/Scans
Cluster Key Scan Block Gets is the number of cluster blocks accessed. Cluster Key
Scans is the number of scans processed on cluster blocks. If the ratio of Cluster Key
Scan Block Gets to Cluster Key Scans is greater than one, the rows for one cluster
key are stored in multiple data blocks and the cluster should be analyzed for row
chaining.

The Size parameter specified during the Create Cluster command determines the
number of cluster keys per block, with the default being one. If this parameter is not
specified correctly, rows for one cluster key may not fit into one data block or there
may be wasted space in the data block. If all of the data for one cluster key does not
fit in one block, additional I/O must occur to access the data. See the Oracle8i
Administrator’s Guide to determine how to calculate the SIZE parameter for the
Create Cluster command.

Consistent Gets and DB Block Gets
Consistent Gets is the number of blocks accessed in the buffer cache for queries
without the select for update clause. DB Block Gets is the number of blocks
accessed in the buffer cache for insert, update, delete and select for update
operations. The sum of these is the total number of requests for data. This value

Performance Monitoring with BSTAT/ESTAT

18-12 Oracle Financial Services Installation and Configuration Guide

includes requests satisfied by access to buffers in memory. The formula is as
follows:

Consistent Gets + DB Block Gets = Logical Reads

Physical Reads is the number of request for a block that caused a physical I/O. To
calculate the hit ratio for the buffer cache use the following formula:

1 - (Physical Reads / Logical Reads) = Hit Ratio

If the hit ratio is lower than 70%, increase the init.ora parameter DB_BLOCK_
BUFFERS. This increases the number of data block buffers in the SGA. Try to aim
for a 90% + hit ratio.

Oracle can collect statistics that estimate the performance gain that would result
from increasing the size of the buffer cache. These are collected in the table
X$KCBRBH by setting the initialization parameter DB_BLOCK_LRU_EXTENDED_
STATISTICS.

A large buffer may not always improve performance. On machines that have
limited memory, too large a buffer may result in paging and swapping, which
decreases overall performance. To analyze the effect of having a smaller buffer
cache set the initialization parameter DB_BLOCK_LRU_STATISTICS and check the
X$KCBCBH table. For further information on collecting and analyzing these
statistics refer to “Tuning the Buffer Cache” in the Oracle8i Administrator’s Guide.

Cumulative Opened Cursors
Cumulative Opened Cursors is the total open cursors that are opened during the
execution of BSTAT/ESTAT. A cursor is opened for each SQL statement that is
parsed into a context area. Performance is improved if cursors are reused because
the SQL statements do not need to be reparsed. If a cursor is not reused, it is best to
close the cursor when the SQL statement completes. Try to reduce the number of
cursors opened per transaction as opposed to the total number opened during the
BSTAT/ESTAT run. General guidelines are 5-7 per transaction for online processing
and up to 10 for batch jobs.

To optimize cursor usage in the Oracle recompilers and SQL*Forms refer to the
corresponding sections in Oracle8i Designing and Tuning for Performance.

Note: Ensure that any increase in DB_BLOCK_BUFFERS does not
increase the SGA size to such an extent that it causes paging and
swapping to occur on the machine.

Performance Monitoring with BSTAT/ESTAT

FDM Database Performance Management 18-13

Recursive Calls
Recursive Calls occur because of cache misses and segment extension. In general, if
recursive calls is greater than 30 per process, the data dictionary cache should be
optimized and segments rebuilt with storage clauses that result in fewer and larger
extents. Segments include tables, indexes, rollback segment and temporary
segments. Refer to Oracle8i Designing and Tuning for Performance for more
information on optimizing the Data Dictionary Cache.

Redo Size
Use the following calculation to determine the average size of a redo entry:

Redo Size / Redo Entries = Average Size of Redo Entries

The redo size indicates how much redo was generated (in bytes) during the run and
is useful in determining how large your redo log files should be.

Redo Log Space Requests
Redo Log Space Requests indicates how many times a user process waited for space
in the redo log buffer. Try increasing the init.ora parameter LOG_BUFFER so that 0
Redo Log Space Requests are made.

Redo Small Copies
Redo Small Copies is the total number of redo entries with fewer bytes than
specified by the init.ora parameter LOG_SMALL_ENTRY_MAX_SIZE. These
entries are written in the redo buffer under the protection of the redo allocation
latch. If Redo Small Copies/Redo Entries is greater than 10%, the init.ora parameter
LOG_SMALL_ENTRY_MAX_SIZE should be decreased to a size smaller than the
average redo entry size. This reduces the number of redo entries copied on the redo
allocation latch and enables more redo entries to be copied on the redo copy latch.

Table Scans
Table Scans on long tables is the total number of full table scans performed on tables
with more than 5 db_blocks. If the number of full table scans is greater than 0 on a

Note: PL/SQL generates extra recursive calls, which may be
unavoidable.

Note: LOG_BUFFER impacts the size of the SGA.

Performance Monitoring with BSTAT/ESTAT

18-14 Oracle Financial Services Installation and Configuration Guide

per transaction the application should be tuned to effectively use Oracle indexes.
Indexes should be used on long tables if more than 10% to 20% of the rows from the
table are returned.

Table Scans on short tables is the number of full table scans performed on tables
with less than 5 db_blocks. It is optimal to perform full table scans on short tables
rather than using indexes. Table Scans on long tables plus Table Scans on short
tables is equal to the number of full table scans performed during the execution of
BSTAT/ESTAT.

Table Scan Blocks Gotten and Table Scan Rows Gotten respectively are the number
of blocks and rows scanned during all full table scans. To determine, on average,
the number of rows gotten per block for all full table scans, use the following
formula:

Table Scan Rows Gotten/Table Scan Blocks Gotten

To determine the approximate number of blocks gotten for short and long table
scans use the following formulas:

Table Scans (short) X 5 blocks = Blocks Scanned (short)

Table Scan Blocks Gotten - Blocks Scanned (short) = Blocks Scanned (long)

Blocks Scanned (long)/Table Scans (long tables) = Average number of blocks
scanned per long table

Table Fetch by Rowid
Table Fetch by Rowid is the number of rows accessed by a rowid. This includes
rows that are accessed using an index and rows that are accessed using direct rowid
lookup. Rowid is the fastest path to a row and should be used whenever practical.

Table Fetch by Continued Row
Table Fetch by Continued Row indicates the number of rows that are chained to
another block. In some cases, such as tables with long columns, this is unavoidable.
However, the ANALYZE table command should be used to further investigate the
chaining. Where possible, chaining should be eliminated by rebulding the table.

User Calls
User Calls is the number of times a call is made to the kernel. Parse Count indicates
the number of times a SQL statement was parsed. The number of calls to the kernel
should be reduced if possible. The Performance Tuning Guide tells you how to setup

Performance Monitoring with BSTAT/ESTAT

FDM Database Performance Management 18-15

array processing to reduce the number of calls to the kernel. Use the following
calculation to determine the number of calls to the kernel per parse:

Parse Count/User Calls = Average calls per parse

System Event Statistics
This statistic is a system-wide collation of the per session wait statistics from
v$session_events. The system-wide statistics are generated from the view
v$system_event.

The following table lists the column headers for this section and a description of
each header.

Average Time to wait for an event is calculated in hundredths of seconds, using the
following formula:

total_time/count

Column Header Description

Column Name of the event

Event Name Total number of waits for the event

Total Time Total time waited for event in hundredths of seconds

Average Time Average time to wait

Performance Monitoring with BSTAT/ESTAT

18-16 Oracle Financial Services Installation and Configuration Guide

Average Length of Dirty Buffer Write Queue
This statistic is generated from the view v$sysstat. The value is calculated from the
following formula:

’summed dirty queue length’ value/’write requests’ value

If this value is larger than the value of the _DB_BLOCK_WRITE_BATCH init.ora
parameter, then consider increasing the value of _DB_BLOCK_WRITE_BATCH and
check for disks that are doing more I/Os than other disks. You should also consider
increasing the parameter DB_BLOCK_SIMULTANEOUS_WRITES.

File I/O Statistics
File I/O statistics are generated from the view stats$file_view.

The following table lists the column headers for this section and a description of
each header.

File I/O should be spread evenly across multiple disk drives. In general, you
should observe the following recommendation:

■ Redo logs should be located on disks that do not contain database files

■ Tables should be located on different disks than their associated indexes

■ Large tables and indexes should be striped across several disks

Column Header Description

Table_Space Name of the data file’s tablespace

File_Name Name of the data file

Phys_Reads Number of physical reads from the database file

Phys_Blks_Rd Number of blocks read from the database file

Phys_Rd_Time Time to read blocks (Timed_statistic must be set)

Phys_Writes Number of physical writes to the database file

Phys_Blks_Wr Number of physical blocks written to the database file

Phys_Wrt_Tm Time to write blocks (Timed_statistic must be set)

Performance Monitoring with BSTAT/ESTAT

FDM Database Performance Management 18-17

■ Active database files should not be located at opposite ends of the disk

■ The most active database files should be located on the highest throughput
disks.

The init.ora parameter DB_FILE_MULTI_BLOCK_READ_COUNT can be set to
increase the number of blocks read during a single read. Increasing this parameter
reduces I/O when full table scans are being performed.

Tablespace I/O Statistic Totals
These are generated from the view stat$file_view and are the same as File I/O
statistics except that they are grouped by tablespace and therefore exclude the
column file_name.

Willing-To-Wait Latch Statistics
Latch Statistics are generated from the view v$latch. The columns of this view
reflect activity for different types of requests for latches. The columns GETS,
MISSES and SLEEPS reflect willing-to-wait requests.

The following table lists the column headers for this section and a description of
each header.

Hit_Ratio is calculated using the following formula:

(gets - misses)/gets

This value should be close to 1. If sleeps/misses > 1% then you are waiting multiple
times for a latch.

Column Header Description

Name Name of the latch

Gets Number of successful willing-to-wait requests for a latch

Misses Number of times an initial willing-to-wait request was
unsuccessful

Hit_Ratio Ratio of gets to misses

Sleeps Number of times a process waited and requested a latch after
an initial willing-to-wait request

Sleeps/Misses Ratio of sleeps to misses

Performance Monitoring with BSTAT/ESTAT

18-18 Oracle Financial Services Installation and Configuration Guide

No_Wait Latch Statistics
No_Wait Latch Statistics are generated from the view v$latch and the columns
IMMEDIATE_GETS and IMMEDIATE_MISSES. A No_Wait or immediate latch
does not wait for the latch to become free; it times out immediately.

The following table lists the column headers for this section and a description of
each header.

Nowait_Ratio is calculated using the following formula:

(nowait_gets - nowait_misses)/nowait_gets

This value should be close to 1.

Rollback Segment Statistics
Rollback Segment Statistics are generated from the view v$rollstat. The following
table lists the column headers for this section and a description of each header.

Column Header Description

Nowait_Gets Name of the latch

Nowait_Misses Number of successful immediate requests for each latch

Nowait_Ratio Number of unsuccessful immediate requests for each latch

Column Header Description

Undo_Segments Rollback segment number

Trans_Tbl_Gets Number of gets for the rollback segment header

Trans_Tbl_Waits Number of waits for the rollback segment header

Undo_Bytes_Wr Number of bytes written to the rollback segment

Segment_Size_By Size of the rollback segment in bytes

Xacts Number of active transactions

Shrinks Number of times the rollback segment shrank, eliminating one or
more extents each time

Wraps Number of time the rollback segment wraps from one extent to
another

Performance Monitoring with BSTAT/ESTAT

FDM Database Performance Management 18-19

If the ratio of Trans_Tbl_Waits to Trans_Tbl_Gets is greater than 5%, additional
rollback segments should be added to the database. In general, rollback segments
should be the same size and created with a large number of small extents.

Init.ora Parameters
This section of the report contains a list of the init.ora parameters that were in effect
during the execution of BSTAT/ESTAT. The output is generated from v$parameter
where isdefault = ’FALSE’.

Data Dictionary Cache Statistics
The Data Dictionary Cache Statistics are generated from the table v$rowcache. The
following table lists the column headers for this section and a description of each
header.

Misses on the data dictionary are to be expected in some cases. On instance startup,
the data dictionary cache contains no data, so any SQL statement issued is likely to
result in cache misses. To tune the cache, examine its activity only after your
application has been running.

Examine cache activity by monitoring the ratio of GET_REQS to GET_MISS. For
frequently accessed dictionary caches, the ratio of total GET_MISS to total GET_
REQS should be less than 10% or 15%. If this ratio continues to increase you should
consider increasing the amount of memory available to the data dictionary cache by
increasing the value of SHARED_POOL_SIZE.

Column Header Description

Name Dictionary cache name

Get_Reqs Total number of requests for object

Get_Miss Total number of object information not in cache

Scan_Req Total number of scan requests

Scan_Miss Total number of scan misses

Mod_Reqs Number of inserts, updates and deletes

Count Total number of entries in the cache

Cur_Usag Total number entries for dictionary cache object

Index Management

18-20 Oracle Financial Services Installation and Configuration Guide

Date/Time
This section lists the date and time that BSTAT/ESTAT was executed.

Index Management
This section describes guidelines to follow when managing indexes and includes
the following topics:

■ Create Indexes After Inserting Table Data

■ Limit the Number of Indexes per Table

■ Specify the Tablespace for Each Index

■ Specify Transaction Entry Parameters

■ Specify Index Block Space Use

■ Parallelize Index Creation

■ Consider Creating UNRECOVERABLE Indexes

■ Estimate Index Size and Set Storage Parameters

■ OFSA-Specific Details

■ Multiprocessing

■ Updating Statistics

■ Originally Supplied Indexes in FDM

Create Indexes After Inserting Table Data
Create an index for a table after inserting or loading data (using either SQL*Loader
or Import) into the table. It is more efficient to insert rows of data into a table that
has no indexes and then create the indexes for subsequent access. If you create
indexes before the data is loaded, every index must be updated every time a row is
inserted into the table.

When an index is created on a table that already has data, Oracle must use sort
space. Oracle uses the sort space in memory allocated for the creator of the index
(the amount per user is determined by the initialization parameter SORT_AREA_
SIZE), but must also swap sort information to and from temporary segments
allocated on behalf of the index creation.

Index Management

FDM Database Performance Management 18-21

To Manage a Large Index
If the index is extremely large, you may want to perform the following tasks:

1. Create a new temporary segment tablespace.

2. Alter the index creator’s temporary segment tablespace.

3. Create the index.

4. Remove the temporary segment tablespace and re-specify the creator’s
temporary segment tablespace, if desired.

Under certain conditions, data can be loaded into a table with SQL*Loader’s direct
path load and an index created as data is loaded. Refer to the Oracle8i Utilities for
more information on this methodology.

Limit the Number of Indexes per Table
A table can have any number of indexes. However, the more indexes there are, the
more overhead is incurred as the table is modified. Specifically, when rows are
inserted or deleted, all indexes on the table must be updated as well. Also, when a
column is updated, all indexes that contain the column must be updated.

Thus, there is a trade-off between the speed of retrieving data from a table and the
speed of updating the table. For example, if a table is primarily read-only, having
more indexes can be useful; but if a table is heavily updated, having fewer indexes
may be preferable.

Specify Transaction Entry Parameters
By specifying the INITRANS and MAXTRANS parameters during the creation of
each index, you can affect how much space is allowed initially and the maximum
space allocated for transaction entries in the data blocks of an index’s segment.

For more information about setting these parameters, see the Oracle8i
Administrator’s Guide.

Specify Index Block Space Use
When an index is created for a table, data blocks of the index are filled with the
existing values in the table up to PCTFREE. The space reserved by PCTFREE for an
index block is only used when a new row is inserted into the table. The
corresponding index entry must be placed in the correct index block (that is,
between preceding and following index entries). If no more space is available in the
appropriate index block, the indexed value is placed in another index block.
Therefore, if you plan on inserting many rows into an indexed table, PCTFREE

Index Management

18-22 Oracle Financial Services Installation and Configuration Guide

should be high to accommodate the new index values. If the table is relatively static,
without many inserts, PCTFREE for an associated index can be low so that fewer
blocks are required to hold the index data.

PCTUSED cannot be specified for indexes. See the Oracle8i Administrator’s Guide for
additional information on this topic.

Specify the Tablespace for Each Index
Indexes can be created in the same or different tablespace as the table it indexes.

If you use the same tablespace for a table and its index, then database maintenance
is more convenient (such as tablespace or file backup and application availability or
update) and all the related data is online together.

Using different tablespaces (on different disks) for a table and its index produces
better performance than storing the table and index in the same tablespace, due to
reduced disk contention.

If you use different tablespaces for a table and its index and one tablespace is offline
(containing either data or index), then the statements referencing that table are not
guaranteed to work.

Parallelize Index Creation
If you have the parallel query option installed, you can parallelize index creation.
Because multiple processes work together to create the index, Oracle can create the
index more quickly than if a single server process created the index sequentially.

When creating an index in parallel, storage parameters are used separately by each
query server process. Therefore, an index created with an INITIAL of 5 MB and a
PARALLEL DEGREE of 12 consumes at least 60 MB of storage during index
creation.

For more information on the parallel query option and parallel index creation, refer
to Oracle8i Designing and Tuning for Performance.

Consider Creating UNRECOVERABLE Indexes
You can create an index without generating any redo log records by specifying
UNRECOVERABLE in the CREATE INDEX statement.

Creating an unrecoverable index has the following benefits:

■ Space is saved in the redo log files

■ The time it takes to create the index is decreased

Index Management

FDM Database Performance Management 18-23

■ Performance improves for parallel creation of large indexes

In general, the relative performance improvement is greater for larger
unrecoverable indexes than for smaller ones. Creating small, unrecoverable indexes
has little affect on the time it takes to create an index. However, for larger indexes
the performance improvement can be significant, especially when you are also
parallelizing the index creation.

Estimate Index Size and Set Storage Parameters
Estimating the size of an index before creating one is useful for two reasons. First,
you can use the combined estimated size of indexes, along with estimates for tables,
rollback segments and redo log files, to determine the amount of disk space
required to hold an intended database. From these estimates, you can make your
hardware purchases and other decisions relating to storage.

Second, you can use the estimated size of an individual index to better manage the
disk space that the index uses. When an index is created, you can set appropriate
storage parameters and improve I/O performance of applications that use the
index.

For example, assume that you estimate the maximum size of a table before creating
it. If you then set the storage parameters when you create the table, fewer extents
are allocated for the table’s data segment, and all of the table’s data is stored in a
relatively contiguous section of disk space. This decreases the time necessary for
disk I/O operations involving this table.

The maximum size of a single index entry is approximately one-half the data block
size minus some overhead.

As with tables, you can explicitly set storage parameters when creating an index.
Try to store the index’s data in a small number of large extents rather than a large
number of small extents.

For specific information on storage parameters, see the Oracle8i Administrator’s
Guide. For specific information on estimating index size, see the same guide.

Considerations Before Disabling or Dropping Constraints
Because unique and primary keys have associated indexes, you should factor in the
cost of dropping and creating indexes when considering whether to disable or drop
a UNIQUE or PRIMARY KEY constraint. If the associated index for a UNIQUE key
or PRIMARY KEY constraint is extremely large, you may save time by leaving the
constraint enabled rather than dropping and re-creating the large index.

Index Management

18-24 Oracle Financial Services Installation and Configuration Guide

OFSA-Specific Details
The database upgrade process does not add or modify indexes on instrument tables.
It is therefore recommended that the processes (SQL statements) that use these
tables be analyzed.

You may find that some of the current indexes on leaves in instrument tables are not
used or that new indexes should be created. It is important to understand which
leaves are used, and how often the leaves are used in each WHERE clause. This may
be different for each instrument table, and the indexes should reflect the level and
type of leaf usage in each table. The performance of inserts, updates, and deletes is
affected by each additional index. These indexing decisions should also consider the
algorithm used by the database optimizer in executing a query.

Multiprocessing
Using multiprocessing can require additional indexes to the instrument tables
(Ledger_Stat is not considered an instrument table). The flexibility included in
OFSA 4.5 multiprocessing enables you to specify the columns used for data slicing
and units of work. Because of this flexibility, it is the your responsibility to identify
and create appropriate indexes for your processing needs.

The database upgrade process does not create any indexes on instrument and client
data tables, because the application of these recommended indexes is dependent on
the processing methodologies employed. This decision is dependent on your
organization’s use of the applications and data. To identify what indexes are
needed, analyze the SQL statements generated during processing. See Chapter 19,
"OFSA Multiprocessing" for more detailed information on configuring the FDM
database for multiprocessing.

It is recommended that you concentrate on instrument tables, particularly joins
involving these tables, and the WHERE/AND clauses in the SQL statements. A
good starting point for this type of process is to analyze both the longest running
processes and the processes executed most frequently. The SQL trace and TKPROF
facilities can be used to capture SQL statements and analyze their EXPLAIN PLAN
output. Refer to the Oracle8i Designing and Tuning for Performance for additional
information on this topic.

Updating Statistics
Statistics should also be collected for instrument tables to aid the ORACLE
optimizer in selecting an efficient execution plan for each SQL statement. In
ORACLE, this is done by the ANALYZE command (see Oracle8i SQL Reference). The

Managing Partitioned Tables and Indexes

FDM Database Performance Management 18-25

ANALYZE command should be run for tables and their indexes after the initial data
load and after running any process that either inserts or deletes a significant
number of rows, or updates indexed columns.

Originally Supplied Indexes in FDM
For new FDM database installations, instrument tables are supplied initially, with
the following indexes defined:

Unique Index : IDENTITY_CODE, ID_NUMBER (primary key index)
Secondary Non-Unique Index : ID_NUMBER
Secondary Non-Unique Index : AS_OF_DATE, ID_NUMBER
Secondary Non-Unique Index : COMMON_COA_ID, AS_OF_DATE
Secondary Non-Unique Index : ORG_UNIT_ID, AS_OF_DATE
Secondary Non-Unique Index : GL_ACCOUNT_ID, AS_OF_DATE
Secondary Non-Unique Index : ISO_CURRENCY_CD

The unique primary index should not be changed. As stated, other indexes are at
your discretion. For example, if an instrument table contains data for only one
month, the as_of_date column should be removed from each index for that table.

General Recommendations
Consider the following as general guidelines in tuning your database:

■ Analyzing the longest running or most time-critical processes and
corresponding SQL.

■ Determine which org/application/[as_of_date] indexes are necessary for
efficient multiprocessing.

■ Create or drop indexes as necessary and periodically run the ANALYZE
command on all instrument tables and their indexes to maximize performance.

Managing Partitioned Tables and Indexes
A partitioned table or index has been divided into a number partitions, which have
the same logical attributes. For example, all partitions in a table share the same
column and constraint definitions, and all partitions in an index share the same
index options.

Each partition is stored in a separate segment and can have different physical
attributes (such as PCTFREE, PCTUSED, INITRANS, MAXTRANS, TABLESPACE,
and STORAGE).

Managing Partitioned Tables and Indexes

18-26 Oracle Financial Services Installation and Configuration Guide

Although you are not required to keep each table or index partition in a separate
tablespace, it is to your advantage to do so. Storing partitions in separate
tablespaces can:

■ Reduce the possibility of data corruption in multiple partitions

■ Make it possible to back up and recover each partition independently

■ Make it possible to control the mapping of partitions to disk drives (important
for balancing I/O load)

Creating Partitions
This section describes how to create table and index partitions.

Creating partitions is similar to creating a table or index - you must use the
CREATE TABLE statement with the PARTITION CLAUSE. Also, you must specify
the tablespace name for each partition when you have partitions in different
tablespaces.

The following example shows a CREATE TABLE statement that contains 4
partitions, one for each sales quarter. A row with SALE_YEAR=1994, SALE_
MONTH=7, and SALE_DAY=18 has the partitioning key (1994, 7, 18) and is in the
third partition in the tablespace tsc. A row with SALE_YEAR=1994, SALE_
MONTH=7, and SALE_DAY=1 has the partitioning key (1994, 7, 1), and also is in
the third partition.

CREATE TABLE sales
(invoice_no NUMBER,
sale_year INT NOT NULL,
sale_month INT NOT NULL,
sale_day INT NOT NULL)
PARTITION BY RANGE
(sale_year, sale_month, sale_day)
(PARTITION sales_q1 VALUES LESS THAN (1994, 04, 01)
TABLESPACE tsa,
PARTITION sales_q2 VALUES LESS THAN (1994, 07, 01)
TABLESPACE tsb,
PARTITION sales_q3 VALUES LESS THAN (1994, 10, 01)
TABLESPACE tsc,
PARTITION sales q4 VALUES LESS THAN (1995, 01, 01)
TABLESPACE tsd);

Managing Partitioned Tables and Indexes

FDM Database Performance Management 18-27

Maintaining Partitions
This section describes the following partition maintenance operations:

■ Moving Partitions

■ Adding Partitions

■ Dropping Partitions

■ Truncating Partitions

■ Splitting Partitions

■ Merging Partitions

■ Exchanging Table Partitions

■ Rebuilding Index Partitions

For general information on partitioning, see Oracle8i Concepts.

For information on SQL syntax for DDL statements, see Oracle8i SQL Reference.

For information on catalog views that describe partitioned tables and indexes, and
the partitions of a partitioned table or index, see the Oracle8i Reference.

For information on Import, Export and partitions, see Oracle8i Utilities.

Managing Partitioned Tables and Indexes

18-28 Oracle Financial Services Installation and Configuration Guide

Moving Partitions
You can use the MOVE PARTITION clause of the ALTER TABLE statement to
perform the following:

■ Re-cluster data and reduce fragmentation

■ Move a partition to another tablespace

■ Modify create-time attributes

Typically, you can change the physical storage attributes of a partition in a single
step using an ALTER TABLE/INDEX MODIFY PARTITION statement. However,
there are some physical attributes, such as TABLESPACE, that you cannot modify
using MODIFY PARTITION. In these cases use the MOVE PARTITION clause.

Moving Table Partitions
You can use the MOVE PARTITION clause to move a partition. For example, you
might want to move the most active partition to a tablespace that resides on its own
disk, in order to balance I/O. To accomplish this you can issue the following
statement:

ALTER TABLE parts MOVE PARTITION depot2
TABLESPACE ts094 NOLOGGING;

This statement always drops the partition’s old segment and creates a new segment,
even if you do not specify a new tablespace.

When the partition you are moving contains data, MOVE PARTITION marks the
matching partition in each local index, and all global index partitions as unusable.
You must rebuild these index partitions after issuing the MOVE PARTITION
statement.

Moving Index Partitions
Some operations, such as MOVE PARTITION and DROP TABLE PARTITION, mark
all partitions of a global index as unusable.

You can rebuild the entire index by rebuilding each partition individually using the
ALTER INDEX REBUILD PARTITION statement. You can perform these rebuilds
concurrently.

You can also drop the index and re-create it.

Managing Partitioned Tables and Indexes

FDM Database Performance Management 18-29

Adding Partitions
This section describes how to add new partitions to a partitioned table and how
partitions are added to local indexes.

Adding Table Partitions
You can use the ALTER TABLE ADD PARTITION statement to add a new partition
to the high end (the point after the last existing partition). If you want to add a
partition at the beginning or in the middle of a table, or if the partition bound on the
highest partition is MAXVALUE, use the SPLIT PARTITION statement instead.

When the partition bound on the highest partition is anything other than
MAXVALUE, you can add a partition using the ALTER TABLE ADD PARTITION
statement.

For example, if you have a table called SALES, which contains data for the current
month in addition to the previous 12 months, you can add a partition for the current
month using a statement similar to the one that follows.

In this example, on January 1, 1996, the DBA adds a partition for January.

ALTER TABLE sales
ADD PARTITION jan96
VALUES LESS THAN (’960201’)
TABLESPACE tsx;

When there are local indexes defined on the table and you issue the ALTER
TABLE... ADD PARTITION statement, a matching partition is also added to each
local index. Because Oracle assigns names and default physical storage attributes to
the new index partitions, you should consider renaming or altering them after the
ADD operation is complete.

Adding Index Partitions
You cannot explicitly add a partition to a local index. Instead, new partitions are
added to local indexes only when you add a partition to the underlying table.

You cannot add a partition to a global index because the highest partition always
has a partition bound of MAXVALUE. If you want to add a new highest partition,
use the ALTER INDEX SPLIT PARTITION statement.

Dropping Partitions
This section describes how to use the ALTER TABLE DROP PARTITION statement
to drop table and index partitions and their data.

Managing Partitioned Tables and Indexes

18-30 Oracle Financial Services Installation and Configuration Guide

Dropping Table Partitions
You can use the ALTER TABLE DROP PARTITION statement to drop table
partitions.

If local indexes are defined for the table, ALTER TABLE DROP PARTITION also
drops the matching partition from each local index.

Dropping Table Partitions Containing Data and Global Indexes
If the partition contains data and global indexes, use either of the following
methods to drop the table partition.

Method 1

Leave the global indexes in place during the ALTER TABLE DROP PARTITION
statement. In this situation DROP PARTITION marks all global index partitions as
unusable, so you must rebuild them afterwards.

The ALTER TABLE DROP PARTITION statement not only marks all global index
partitions as unusable, but it also renders all non-partitioned indexes as unusable.
Because the entire partitioned index cannot be rebuilt using one statement, sal1, in
the following statement, is a non-partitioned index.

ALTER TABLE sales DROP PARTITION dec94;
ALTER INDEX sales_area_ix REBUILD sal1;

This method is best suited for large tables where the partition being dropped
contains a significant percentage of the total data in the table.

Method 2

Issue the DELETE command to delete all rows from the partition before you issue
the ALTER TABLE DROP PARTITION statement. The DELETE command updates
the global indexes and also fires triggers and generates redo and undo logs.

Note: You can substantially reduce the amount of logging by
setting the NOLOGGING attribute (using ALTER
TABLE...MODIFY PARTITION...NOLOGGING) for the partition
before deleting all of its rows.

Managing Partitioned Tables and Indexes

FDM Database Performance Management 18-31

For example, if you want to drop the first partition, which has a partition bound of
10000, you would issue the following statements:

DELETE FROM sales WHERE TRANSID < 10000;
ALTER TABLE sales DROP PARTITION dec94;

This method is best suited for small tables, or for large tables if the partition being
dropped contains a small percentage of the total data in the table.

Dropping Table Partitions Containing Data and Referential Integrity
Constraints
If a partition contains data and has referential integrity constraints, choose either of
the following methods to drop the table partition.

Method 1

First, disable the integrity constraints, then issue the ALTER TABLE DROP
PARTITION statement. Finally, enable the integrity constraints.

The following statement is an example of this method.

ALTER TABLE sales
DISABLE CONSTRAINT dname_sales1;
ALTER TABLE sales DROP PARTITTION dec94;
ALTER TABLE sales
ENABLE CONSTRAINT dname_sales1;

This method is best suited for large tables where the partition being dropped
contains a significant percentage of the total data in the table.

Method 2

Issue the DELETE command to delete all rows from the partition before you issue
the ALTER TABLE DROP PARTITION statement. The DELETE command enforces
referential integrity constraints and also fires triggers and generates redo and undo
logs. An example of this statement follows:

DELETE FROM sales WHERE TRANSID < 10000;
ALTER TABLE sales DROP PARTITION dec94;

This method is best suited for small tables, or for large tables if the partition being
dropped contains a small percentage of the total data in the table.

Dropping Index Partitions
You cannot explicitly drop a partition from a local index. Local index partitions are
dropped only when you drop a partition from the underlying table.

Managing Partitioned Tables and Indexes

18-32 Oracle Financial Services Installation and Configuration Guide

However, if a global index partition is empty, you can explicitly drop it by issuing
the ALTER INDEX DROP PARTITION statement.

If a global index partition contains data, dropping the partition causes the next
highest partition to be marked as unusable.

For example, if you want to drop the index partition P1, and P2 is the next highest
partition, you must issue the following statements:

ALTER INDEX npr DROP PARTITION P1;
ALTER INDEX npr REBUILD PARTITION P2;

Truncating Partitions
Use the ALTER TABLE TRUNCATE PARTITION statement when you want to
remove all rows from a table partition. You cannot truncate an index partition.
However, the ALTER TABLE TRUNCATE PARTITION statement truncates the
matching partition in each local index.

Truncating Partitioned Tables
You can use the ALTER TABLE TRUNCATE PARTITION statement to remove all
rows from a table partition with or without reclaiming space. If there are local
indexes defined for this table, ALTER TABLE TRUNCATE PARTITION also
truncates the matching partition from each local index.

Truncating Table Partitions Containing Data and Global Indexes
If the partition contains data and global indexes, use either of the following
methods to truncate the table partition.

Method 1

Leave the global indexes in place during the ALTER TABLE TRUNCATE
PARTITION statement. In this situation TRUNCATE PARTITION marks all global
index partitions as unusable, so you must use the ALTER INDEX REBUILD
command.

The ALTER TABLE TRUNCATE PARTITION statement not only marks all global
index partitions as unusable but it also renders all non-partitioned indexes as

Note: You cannot drop the highest partition in a global index.

Managing Partitioned Tables and Indexes

FDM Database Performance Management 18-33

unusable. Because the entire partitioned index cannot be rebuilt using one
statement, sal1, in the following statement, is a non-partitioned index.

ALTER TABLE sales TRUNCATE PARTITION dec94;
ALTER INDEX sales_area_ix REBUILD sal1;

This method is best suited for large tables where the partition being truncated
contains a significant percentage of the total data in the table.

Method 2

Issue the DELETE command to delete all rows from the partition before you issue
the ALTER TABLE TRUNCATE PARTITION statement. The DELETE command
updates the global indexes, and also fires triggers and generates redo and undo
logs.

This method is best suited for small tables, or for large tables if the partition being
truncated contains a small percentage of the total data in the table.

Truncating Table Partitions Containing Data and Referential Integrity
Constraints
If a partition contains data and has referential integrity constraints, choose either of
the following methods to truncate the table partition.

Method 1

First, disable the integrity constraints then issue the ALTER TABLE TRUNCATE
PARTITION statement. Finally, enable the integrity constraints. The following
statement is an example of this method.

ALTER TABLE sales
DISABLE CONSTRAINT dname_sales1;
ALTER TABLE sales TRUNCATE PARTITTION dec94;
ALTER TABLE sales
ENABLE CONSTRAINT dname_sales1;

This method is best suited for large tables where the partition being truncated
contains a significant percentage of the total data in the table.

Managing Partitioned Tables and Indexes

18-34 Oracle Financial Services Installation and Configuration Guide

Method 2

Issue the DELETE command to delete all rows from the partition before you issue
the ALTER TABLE TRUNCATE PARTITION statement. The DELETE command
enforces referential integrity constraints, and also fires triggers and generates redo
and undo logs.

You can substantially reduce the amount of logging by setting the NOLOGGING
attribute (using ALTER TABLE...MODIFY PARTITION...NOLOGGING) for the
partition before deleting all of its rows. An example of this statement follows:

DELETE FROM sales WHERE TRANSID < 10000;
ALTER TABLE sales TRUNCATE PARTITION dec94;

This method is best suited for small tables, or for large tables if the partition being
truncated contains a small percentage of the total data in the table.

Splitting Partitions
This form of ALTER TABLE/INDEX divides a partition into two partitions. You can
use the SPLIT PARTITION clause when a partition becomes too large and causes
backup, recovery or maintenance operations to take a long time. You can also use
the SPLIT PARTITION clause to redistribute the I/O load.

Splitting Table Partitions
You can split a table partition by issuing the ALTER TABLE SPLIT PARTITION
statement. If there are local indexes defined on the table, this statement also splits
the matching partition in each local index. Because Oracle assigns system-generated
names and default storage attributes to the new index partitions, you should
consider renaming or altering these index partitions after splitting them.

If the partition you are splitting contains data, the ALTER TABLE SPLIT
PARTITION statement marks the matching partitions (there are two) in each local
index, as well as all global index partitions, as unusable. You must rebuild these
index partitions after issuing the ALTER TABLE SPLIT PARTITION statement.

Splitting a Table Partition: Scenario
This example describes the method for splitting a table partition.

In this scenario, fee_katy is a partition in the table VET_cats, which has a local
index, JAF1. There is also a global index, VET on the table. VET contains two
partitions, VET_parta, and VET_partb.

Managing Partitioned Tables and Indexes

FDM Database Performance Management 18-35

To split the partition fee_katy and rebuild the index partitions, you need to issue the
following statements:

ALTER TABLE vet_cats SPLIT PARTITION
fee_katy at (100) INTO (PARTITION
fee_katy1 ..., PARTITION fee_katy2 ...);

ALTER INDEX JAF1 REBUILD PARTITION SYS_P00067;
ALTER INDEX JAF1 REBUILD PARTITION SYS_P00068;
ALTER INDEX VET REBUILD PARTITION VET_parta;
ALTER INDEX VET REBUILD PARTITION VET_partb;

You must examine Oracle’s system tables to locate the names assigned to the new,
local index partitions. In this scenario, they are SYS_P00067 and SYS_P00068. If you
want, you can rename them.

Also, unless JAF1 already contained the partitions fee_katy1 and fee_katy2, names
assigned to local index, partitions produced by this split will match those of the
corresponding base table partitions.

Splitting Index Partitions
You cannot explicitly split a partition in a local index. A local index partition is split
only when you split a partition in the underlying table.

You can issue the ALTER INDEX SPLIT PARTITION statement to split a partition in
a global index if the partition is empty.

The following statement splits the index partition containing data, QUON1:

ALTER INDEX quon1 SPLIT
PARTITION canada AT VALUES LESS THAN (100) INTO
PARTITION canada1 ..., PARTITION canada2 ...);
ALTER INDEX quon1 REBUILD PARTITION canada1;
ALTER INDEX quon1 REBUILD PARTITION canada2;

Merging Partitions
While there is no explicit MERGE statement, you can merge a partition using either
the DROP PARTITION or EXCHANGE PARTITION clauses.

Managing Partitioned Tables and Indexes

18-36 Oracle Financial Services Installation and Configuration Guide

Merging Table Partitions
You can use either of the following methods to merge table partitions.

Method 1

If you have data in partition OSU1 and no global indexes or referential integrity
constraints on the table, OH, you can merge table partition OSU1 into the next
highest partition, OSU2.

To merge partition OSU1 into partition OSU2 complete the following steps:

1. Export the data from OSU1.

2. Issue the following statement:

ALTER TABLE OH DROP PARTITION OSU1;

3. Import the data from Step 1 into partition OSU2.

Method 2

Another way to merge partition OSU1 into partition OSU2 is to complete the
following steps:

1. Exchange partition OSU1 of table OH with dummy table COLS.

2. Issue the following statement:

ALTER TABLE OH DROP PARTITION OSU1;

3. Insert as SELECT from the dummy table to move the data from OSU1 back into
OSU2.

Merging Partitioned Indexes
The only way to merge partitions in a local index is to merge partitions in the
underlying table.

If the index partition BUCKS is empty, you can merge global index partition BUCKS
into the next highest partition, GOOSU, by issuing the following statement:

ALTER INDEX BUCKEYES DROP PARTITION BUCKS;

Note: The corresponding local index partitions are also merged

Managing Partitioned Tables and Indexes

FDM Database Performance Management 18-37

If the index partition BUCKS contains data, then issue the following statements:

ALTER INDEX BUCKEYES DROP PARTITION BUCKS;
ALTER INDEX BUCKEYES REBUILD PARTITION GOOSU;

While the first statement marks partition GOOSU as unusable, the second makes it
valid again.

Exchanging Table Partitions
You can convert a partition into a non-partitioned table, and convert a table into a
partition of a partitioned table by exchanging their data (and index) segments.
Exchanging table partitions is most useful when you have an application using
non-partitioned tables that you want to convert to partitions of a partitioned table.
For example, you may already have partition views that you want to migrate into
partitioned tables.

Merging Adjacent Table Partitions: Scenario
This example describes how to merge two adjacent table partitions.

Suppose you want to merge two partitions, FEB95 and MAR95, of the SALES table
by moving the data from the FEB95 partition into the MAR95 partition.

To merge the two table partitions complete the following steps:

1. Create a temporary table to hold the FEB95 partition data using statements
similar to the following:

CREATE TABLE sales_feb95 (...)
TABLESPACE ts_temp STORAGE (INITIAL 2);

2. Exchange the FEB95 partition segment into the table SALES_FEB95, using the
following statement:

ALTER TABLE sales
EXCHANGE PARTITION feb95 WITH TABLE
sales_feb95 WITHOUT VALIDATION;

Now the SALES_FEB95 table placeholder segment is attached to the FEB95
partition.

3. Drop the FEB95 partition by issuing the following statement:

ALTER TABLE sales DROP PARTITION feb95;

This frees the segment originally owned by the SALES_FEB95 table.

Rollback Segment Sizing and Management

18-38 Oracle Financial Services Installation and Configuration Guide

4. Move the data from the SALES_FEB95 table into the MAR95 partition using an
INSERT statement:

INSERT INTO sales PARTITION (mar95)
SELECT * FROM sales_feb95;

Using the extended table name in this situation is more efficient. Instead of
attempting to compute the partition to which a row belongs, Oracle verifies that
it belongs to the specified partition.

5. Drop the SALES_FEB95 table to free the segment originally associated with the
FEB95 partition, using the following statement:

DROP TABLE sales_feb95;

6. Rename the MAR95 partition (this step is optional).

ALTER TABLE sales RENAME PARTITION mar95 TO feb_mar95;

For more information on deferring index maintenance, see the ALTER SESSION
SET SKIP_UNUSABLE_INDEXES statement in Oracle8i SQL Reference.

Rebuilding Index Partitions
Some operations, such as ALTER TABLE DROP PARTITION, mark all partitions of
a global index as unusable. You can rebuild global index partitions in either of the
following ways:

■ Rebuild each partition by issuing the ALTER INDEX REBUILD PARTITION
statement (you can run the rebuilds concurrently).

■ Drop the index and re-create it.

This method is more efficient because the table is scanned only once.

Rollback Segment Sizing and Management
The total rollback segment size should be set based on the size of the most common
transactions issued against a database. In general, short transactions experience
better performance when the database has many smaller rollback segments, while
long-running transactions, like OFSA batch jobs, perform better with larger rollback
segments. Generally, rollback segments can handle transactions of any size easily;
however, in extreme cases when a transaction is either very short or very long, a
user might want to use an appropriately sized rollback segment.

If a system is running only short transactions, rollback segments should be small so
that they are always cached in main memory. If the rollback segments are small

Rollback Segment Sizing and Management

FDM Database Performance Management 18-39

enough, they are more likely to be cached in the SGA according to the LRU
algorithm, and database performance is improved because less disk I/O is
necessary.

The main disadvantage of small rollback segments is the increased likelihood of the
error snapshot too old when running a long query involving records that are
frequently updated by other transactions. This error occurs because the rollback
entries needed for read consistency are overwritten as other update entries wrap
around the rollback segment. Consider this issue when designing an application’s
transactions, and make them short atomic units of work so that you can avoid this
problem.

In contrast, long running transactions work better with larger rollback segments,
because the rollback entries for a long running transaction can fit in pre-allocated
extents of a large rollback segment.

When a database system's applications concurrently issue a mix of very short and
very long transactions, performance can be optimized if transactions are explicitly
assigned to a rollback segment based on the transaction/rollback segment size.

You can also minimize dynamic extent allocation and truncation for rollback
segments. This is not required for most systems and is intended for extremely large
or small transactions. To optimize performance when issuing a mix of extremely
small and large transactions, make a number of rollback segments of appropriate
size for each type of transaction (such as small, medium and large). Most rollback
segments should correspond to the typical transactions, with a fewer number of
rollback segments for the atypical transactions. Then set OPTIMAL for each such
rollback segment so that the rollback segment returns to its intended size if it has to
grow.

You should tell end users about the different sets of rollback segments that
correspond to the different types of transactions. Often, it is not beneficial to assign
a transaction explicitly to a specific rollback segment. However, you can assign an
atypical transaction to an appropriate rollback segment created for such
transactions. For example, you can assign a transaction that contains a large batch
job to a large rollback segment.

When a mix of transactions is not prevalent, each rollback segment should be 10%
of the size of the database's largest table. This is because most SQL statements affect
10% or less of a table; therefore, a rollback segment of this size should be sufficient
to store the actions performed by most SQL statements.

In general, you should set a high MAXEXTENTS for rollback segments. This
provides a rollback segment to allocate subsequent extents, as needed.

Rollback Segment Sizing and Management

18-40 Oracle Financial Services Installation and Configuration Guide

Create Rollback Segments with Many Equally Sized Extents
Each rollback segment’s total allocated space should be divided among many
equally sized extents. In general, optimal rollback I/O performance is observed if
each rollback segment for an instance has 10 to 20 equally sized extents.

After determining the desired total initial size of a rollback segment and the number
of initial extents for the segment, use the following formula to calculate the size of
each extent of the rollback segment:

T / n = s

where:

T = total initial rollback segment size, in bytes

n = number of extents initially allocated

s = calculated size, in bytes, of each extent initially allocated

After s is calculated, create the rollback segment and specify the storage parameters
INITIAL and NEXT as s, and MINEXTENTS to n. PCTINCREASE cannot be
specified for rollback segments and therefore defaults to 0. Also, if the size s of an
extent is not an exact multiple of the data block size, it is rounded up to the next
multiple.

Set an Optimal Number of Extents for Each Rollback Segment
You should carefully assess the kind of transactions the system runs when setting
the OPTIMAL parameter for each rollback segment. For a system that executes
long-running transactions frequently, OPTIMAL should be large so that Oracle does
not have to shrink and allocate extents frequently. Also, for a system that executes
long queries on active data, OPTIMAL should be large to avoid snapshot too old
errors. OPTIMAL should be smaller for a system that mainly executes short
transactions and queries, so that the rollback segments remain small enough to be
cached in memory, thus improving system performance.

OFSA Multiprocessing 19-1

19
OFSA Multiprocessing

This chapter provides information on configuring the Oracle Financial Services
Application (OFSA) server-centric software for multiprocessing.

The following topics are covered in this chapter:

■ Multiprocessing Model

■ Multiprocessing Options

■ Specifying Multiprocessing Parameters

■ Tuning Multiprocessing

■ Migration from OFSA 3.5/4.0

■ Examples

Caution: OFS application multiprocessing settings in FDM 4.5 are
no longer specified in the server ini files. Rather, they are
designated in the database. Because of this, all OFS application
multiprocessing settings revert to the default after the FDM
upgrade process is complete. If you are upgrading to FDM 4.5 from
a previous release of OFSA, refer to Chapter 11, "Upgrading from
OFSA 3.5/4.0"for more information.

Multiprocessing Model

19-2 Oracle Financial Services Installation and Configuration Guide

Multiprocessing Model
By default multiprocessing is disabled for all OFS applications. Multiprocessing is
enabled by setting application specific parameters located in tables within the
Oracle Financial Data Manager (FDM) data model. The following applications and
features have multiprocessing settings:

■ Oracle Balance & Control – Data Correction Process ID

■ Customer Householding

■ Performance Analyzer – Allocation ID

■ Risk Manager – Risk Manager Process ID

■ Transfer Pricing – Transfer Pricing Process ID

■ Transformation ID

OFSA multiprocessing is based on the concept of a unit of work. A unit of work is a
set of rows from the database. A single OFSA process becomes multiple processes
by dividing the single process according to distinct sets of rows. Units of work are
distributed to worker processes until all processes have been completed. To achieve
multiple parallel processes, the following options must be configured:

■ creating a list(s) of units of work

■ defining the number of worker processes to service the units of work lists

■ defining how the worker processes service the unit of work lists

Multiprocessing Model

OFSA Multiprocessing 19-3

The specifics of each option are discussed. However, the following diagram
illustrates the basic multiprocessing principles:

1. The main process makes a list of all units of work that need to be processed.

2. The main process spawns worker processes. Each worker process is assigned a
unit of work by the main process.

3. When all units of work have been completed, the worker process exits and the
main process finishes any clean-up aspects of processing.

4. During processing the following is true:

■ Each worker process must form its own database connection.

■ A unit of work is processed only by a single worker process.

Main OFSA Process

Unit of Work 1

Unit of Work 4

Unit of Work 3

Unit of Work 2

Worker Process 1

Worker Process 2

Unit of
Work List

Table

Multiprocessing Options

19-4 Oracle Financial Services Installation and Configuration Guide

■ Different units of work are processed at the same time by different worker
processes.

Multiprocessing Options
The Multiprocessing Options are the settings and parameters that control how
individual OFSA IDs are processed by the OFSA engines. The FDM database
includes default settings for all of the multiprocessing options. However, you can
also customize the settings for your own use. The section describes the different
Multiprocessing options as well as how to customize each. These options are:

■ Units of Work

■ Unit of Work Servicing

■ Worker Processes

Units of Work
The OFSA processing engines determine units of work for any job based upon the
Process Data Slicing Code (PROCESS_DATA_SLICES_CD) assignment. The Data
Slicing Code is comprised of one or more columns by which data in the (processed)
table is segmented. The individual segments are the defined Units of Work.

The OFSA multiprocessing model enables you to specify different Unit of Work
definitions for your processes. You could specify one Unit of Work definition for
one set of processes, and then specify a different Unit of Work definition for another
set of processes.

The OFSA Processing Engines determine the units of work for a job by executing
the following statement (with filtering criteria applied) on every table the process is
run against:

select distinct <data slice columns> from <table>
where <filter condition>;

Note: If data is not distributed well across physical devices, I/O
contention may offset the advantage of parallelism within OFSA for
I/O bound processing.

Multiprocessing Options

OFSA Multiprocessing 19-5

where <data slice columns> is the comma-separated list of columns used for data
slicing, <table> is the name of the table being processed and <filter condition> is the
additional filter (if any) for the process. Any column(s) in a table can be used for
data slicing.

Default Unit of Work Definitions
OFSA provides three default Unit of Work definitions:

Any single Process Data Slice Code can be comprised of multiple columns. As an
example of this, the PROCESS_DATA_SLICES_CD = 1 is comprised of both ORG_
UNIT_ID and COMMON_COA_ID. The PROCESS_DATA_SLICES_SEQ identifies
the precedence for the columns within the Process Data Slices CD.

Creating Customized Unit of Work Definitions
In order to create a customized Unit of Work definition, you need to create a new
PROCESS_DATA_SLICES_CD value and specify appropriate parameters for it.

OFSA_PROCESS_DATA_SLICES and OFSA_PROCESS_DATA_SLICES_DTL tables
control the data slice columns and the resulting order of units of work. Data
slicing methods are created by inserting a new code value into OFSA_PROCESS_
DATA_SLICES.PROCESS_DATA_SLICES_CD. Similarly, the columns used for data
slicing are created by inserting new rows into OFSA_PROCESS_DATA_SLICES_
DTL.

The descriptions for the columns in OFSA_PROCESS_DATA_SLICES and OFSA_
PROCESS_DATA_SLICES_DTL are provided for your reference.

PROCESS_DATA_
SLICES_CD

PROCESS_DATA_
SLICES_SEQ COLUMN_NAME

1 1 ORG_UNIT_ID

1 2 COMMON_COA_ID

2 1 ORG_UNIT_ID

3 1 COMMON_COA_ID

TABLE_NAME COLUMN_NAME DISPLAY_NAME DESCRIPTION

OFSA_PROCESS_
DATA_SLICES

PROCESS_DATA_
SLICES_CD

Process Data Slices
Code

Process Data Slices
Code

OFSA_PROCESS_
DATA_SLICES_DTL

PROCESS_DATA_
SLICES_CD

Process Data Slices
Code

Process Data Slices
Code

Multiprocessing Options

19-6 Oracle Financial Services Installation and Configuration Guide

In order to create a customized Unit of Work definition, you need to insert data into
the OFSA_PROCESS_DATA_SLICES and OFSA_PROCESS_DATA_SLICES_DTL
tables. Example data illustrating a customized Unit of Work definition is as follows:

OFSA_PROCESS_DATA_SLICES

OFSA_PROCESS_DATA_SLICES_DTL

Unit of Work Servicing
Unit of Work Servicing identifies how the OFSA processing engines interact with
Oracle RDMBS Table Partitioning.

What is Partitioning?
Partitioning addresses the key problem of supporting very large tables and indexes
by enabling you to decompose them into smaller and more manageable pieces
called partitions. Once partitions are defined, SQL statements can access and
manipulate the partitions rather than entire tables or indexes. Partitions are
especially useful in data warehouse applications, which commonly store and
analyze large amounts of historical data. See Oracle 8i Concepts for more
information.

What is Unit of Work Servicing?
Unit of Work Servicing specifies how individual units of work are processed for a
table that is partitioned.

OFSA_PROCESS_
DATA_SLICES_DTL

PROCESS_DATA_
SLICES_SEQ

Process Data Slices
Sequence

Precedence of slicing
the data

OFSA_PROCESS_
DATA_SLICES_DTL

COLUMN_NAME Column Name Column name used
for slicing

PROCESS_DATA_SLICES_CD

4

PROCESS_DATA_
SLICES_CD

PROCESS_DATA_
SLICES_SEQ COLUMN_NAME

4 1 ORG_UNIT_ID

4 2 TP_COA_ID

Multiprocessing Options

OFSA Multiprocessing 19-7

For a partitioned table, an application Process ID can create multiple Units of Work
Lists by executing the following statement (with filtering criteria applied) on every
table partition the process is run against:

select distinct <data slice columns> from <table_partition_n>

where <data slice columns> is the comma-separated list of columns used for data
slicing. Any column(s) in a table can be used for data slicing. <table_partition_n>
are the unique table partitions of a table where n is assumed to be greater than 1.

The different Servicing methodologies are stored in the OFSA_PROCESS_
PARTITION and OFSA_PROCESS_PARTITION_MLS tables. You cannot add any
customized Servicing methodologies. The Servicing methodologies provided in
Release 4.5 are listed as follows:

These methodologies are defined as follows:

■ Single Servicing

■ Cooperative Servicing

■ Dedicated Servicing

Single Servicing
Single Servicing indicates that the OFSA processing engine fulfils unit of work
requests regardless of any table partitioning. As each individual process completes,
it requests the next unit of work segment, whether or not that segment belongs in
the same Table partition.

Use Single Servicing when you do not have Oracle Table Partitioning in your
database.

Cooperative Servicing
Cooperative Servicing indicates that the OFSA processing engine fulfils unit of
work requests so that each process works against a specific partition unless it is idle.
Idle processes then work against the next available unit of work segment, whether
or not that segment belongs in the same Table partition.

PROCESS_PARTITION_CD PROCESS_PARTITION

0 Do not use partitions (Single Servicing)

1 Use shared partitions (Cooperative Servicing)

2 Use non-shared partitions (Dedicated Servicing)

Multiprocessing Options

19-8 Oracle Financial Services Installation and Configuration Guide

Dedicated Servicing
Dedicated Servicing indicates that the OFSA processing engine fulfils unit of work
requests so that each process works against a specific partition.

Examples of How Worker Processes Service Units of Work
OFSA_PROCESS_ID_STEP_RUN_OPT.PROCESS_PARTITION_CD defines how
Worker Processes service the Units of Work Lists(s). As explained in the Define
Units of Work List(s) step, a OFSA_PROCESS_ID_STEP_RUN_OPT.PROCESS_
PARTITION_CD equal to 0 results in a single Units of Work List. With a single Units
of Work List, all available worker processes service the list until all Units of Work
are complete. When OFSA_PROCESS_ID_STEP_RUN_OPT.PROCESS_
PARTITION_CD equals 1 or 2 and the table to be processed is partitioned, multiple
Units of Work Lists are created. The following scenarios explain how the worker
processes service multiple Units of Work Lists:

Scenario 1: Number of Worker Processes > Number of Units of Work Lists

■ The main process makes two lists of all units of work that need to be processed,
Unit of Work List A and Unit of Work List B respectively. (The setup is that the
Table has two partitions.)

Main OFSA Process

Unit of Work
A1

Unit of Work
A3

Unit of Work
A2

Unit of
Work List

A

Unit of Work
B1

Unit of Work
B3

Unit of Work
B2

Unit of
Work List

B

Worker
Process A1

Worker
Process 3

Worker
Process B1

Worker
Process 4

Table

Partition A

Partition B

Multiprocessing Options

OFSA Multiprocessing 19-9

■ The main process spawns four worker processes. A dedicated worker process is
assigned to service each Units of Work List, Worker Process A1 and Worker
Process B1 respectively. (The setup is (OFSA_PROCESS_ID_STEP_RUN_
OPT.NUM_OF_PROCESSES = 4)

■ If OFSA_PROCESS_ID_STEP_RUN_OPT.PROCESS_PARTITION_CD
equals 1, Worker Process 3 and Worker Process 4 assist Worker Process A1.
When a Unit of Work List is complete the available worker processes assist
dedicated worker process on their Unit of Work List.

■ If OFSA_PROCESS_ID_STEP_RUN_OPT.PROCESS_PARTITION_CD
equals 2, Worker Process 3 and Worker Process 4 do not assist the dedicated
worker processes.

■ When all units of work have been completed, the worker process exits and the
main process finishes any clean-up aspects of processing.

■ During processing the following is true:

■ Each worker process must form its own database connection.

■ A unit of work is processed only by a single worker process.

■ Different units of work are processed at the same time by different worker
processes.

Scenario 2: Number of Worker Processes < Number of Units of Work Lists

■ The main process makes three lists of all units of work that need to be
processed, Unit of Work List A, Unit of Work List B, and Unit of Work List C
respectively. (The setup is that the Table has three partitions.)

■ The main process spawns two worker processes. A dedicated worker process is
assigned to service a Units of Work List, Worker Process A1 and Worker Process
B1 respectively. (The setup is (OFSA_PROCESS_ID_STEP_RUN_OPT.NUM_
OF_PROCESSES = 2)

■ If OFSA_PROCESS_ID_STEP_RUN_OPT.PROCESS_PARTITION_CD
equals 1, Worker Process A1 and Worker Process B1 work until all units of
work are complete from all three Unit of Work Lists.

■ If OFSA_PROCESS_ID_STEP_RUN_OPT.PROCESS_PARTITION_CD
equals 2, the first worker process to complete their Unit of Work List
services Unit of Work List C. When the other worker process completes
their list, the worker process exits.

Specifying Multiprocessing Parameters

19-10 Oracle Financial Services Installation and Configuration Guide

■ When all units of work have been completed, the worker process exits and the
main process finishes any clean-up aspects of processing.

■ During processing the following is true:

■ Each worker process must form its own database connection.

■ A unit of work is processed only by a single worker process.

■ Different units of work are processed at the same time by different worker
processes.

Worker Processes
Worker Processes is the number of individual processes working simultaneously to
complete the job. The Main OFSA Process launches the individual worker
processes. OFSA enables you to specify the number of worker processes for your
jobs.

Specifying Multiprocessing Parameters
The FDM Database Creation and Database Upgrade processes seed default
multiprocessing parameters. By default, multiprocessing is turned off for all

Main OFSA Process

Unit of Work
A1

Unit of Work
A3

Unit of Work
A2

Unit of
Work List

A

Unit of Work
B1

Unit of Work
B3

Unit of Work
B2

Unit of
Work List

B

Worker
Process A1

Worker
Process B1

Unit of Work
C1

Unit of Work
C3

Unit of Work
C2

Unit of
Work List

C

Table

Partition B

Partition C

Partition A

Specifying Multiprocessing Parameters

OFSA Multiprocessing 19-11

processes. In order to turn multiprocessing on, you must specify the
multiprocessing parameters for your jobs.

This section discusses the following topics:

■ Multiprocessing Assignment Levels

■ Defining Multiprocessing

■ Engine Overrides

Multiprocessing Assignment Levels
Multiprocessing parameters can be specified at different levels. A Multiprocessing
Assignment Level is the category of OFSA IDs that are processed with a designated
set of multiprocessing parameters.

OFSA provides multiprocessing assignments at the following levels:

■ Processing Engine

■ Processing Engine Step

■ OFSA ID

Processing Engine
When specifying multiprocessing parameters at the Processing Engine level, all
Processing IDs for that engine are processed with the designated parameters.

The valid Process Engine values are:

OFSA_PROCESS_ENGINE

PROCESS_
ENGINE_CD PROCESS_ENGINE_NAME DESCRIPTION

0 Performance Analyzer Engine Performance Analyzer Allocation
ID

2 Risk Manager Engine Risk Manager Process ID

3 Transfer Pricing Engine Transfer Pricing Process ID

4 Balance & Control Engine Balance & Control Data
Correction Processing ID

14 Transformation Engine Transformation ID

Specifying Multiprocessing Parameters

19-12 Oracle Financial Services Installation and Configuration Guide

Processing Engine Step
OFSA multiprocessing enables you to designate a set of multiprocessing parameters
to be used for a specific step within a given Processing Engine. The Processing
Engine Step identifies a particular phase of an OFSA process. Processing Engine
Steps are reserved names specific to each OFSA Processing Engine.

Each Processing Engine Step Name applies to a specific Processing Engine Code.
The list of valid Processing Engine Steps and the Processing Engine Code for which
they apply is as follows:

OFSA IDs
You can specify multiprocessing parameters at the OFSA ID level to override any
parameters assigned at the Processing Engine level. This enables you to
individualize your multiprocessing options to handle situations unique to specific
OFSA IDs.

A list of valid OFSA IDs is obtained from the OFSA_CATALOG_OF_IDS table. Only
IDs of the following types are available for processing:

■ Performance Analyzer Allocation ID

■ Risk Manager Process ID

■ Transfer Pricing Process ID

Process Engine CD Step Name

0 DEFAULT

0 Page:<space>###

2 Client Data by Prod

2 Client Data by Prod, Org

2 Client Data by Prod, Currency

2 Monte Carlo client data

3 DEFAULT

4 DEFAULT

4 Bulk Statements

4 Cash Flow Edits

4 All Rules

14 DEFAULT

Specifying Multiprocessing Parameters

OFSA Multiprocessing 19-13

■ Balance & Control Data Correction Process ID

■ Transformation ID

Defining Multiprocessing
Defining Multiprocessing is the process of associating Multiprocessing parameters
to OFSA Processing IDs and Processing Engines. Included in this section are the
following topics:

■ Parameter Tables

■ How to Specify Parameters

Parameter Tables
To define multiprocessing, you insert data into the following objects:

■ OFSA_PROCESS_ID_RUN_OPTIONS

■ OFSA_PROCESS_ID_STEP_RUN_OPT

■ OFSA_PROCESS_ID_RUN_OPTIONS_V (Read Only View)

These tables are each described as follow:

OFSA_PROCESS_ID_RUN_OPTIONS

TABLE_NAME DISPLAY_NAME DESCRIPTION

OFSA_PROCESS_ID_RUN_
OPTIONS

Process ID Run
Options

This table specifies the OFSA
Process ID for a single Process
Engine.

OFSA_PROCESS_ID_STEP_RUN_
OPT

Process ID Step Run
Options

This table specifies the OFSA
Process ID options to include
specific step options.

OFSA_PROCESS_ID_RUN_
OPTIONS_V

Process ID Run
Options Views

A read-only view based on
OFSA_PROCESS_ID_RUN_
OPTIONS and OFSA_PROCESS_
ID_STEP_RUN_OPT tables.

COLUMN_NAME DISPLAY_NAME DESCRIPTION

SYS_ID_NUM System ID Number Process ID System ID
Number

Specifying Multiprocessing Parameters

19-14 Oracle Financial Services Installation and Configuration Guide

OFSA_PROCESS_ID_STEP_RUN_OPT

OFSA_PROCESS_ID_RUN_OPTIONS_V

PROCESS_ENGINE_CD Process Engine Code Process Engine Code that
run this Process ID

COLUMN_NAME DISPLAY_NAME DESCRIPTION

SYS_ID_NUM System ID Number Process ID System ID
Number

STEP_NAME Step Name The step of the Process ID
getting the Process Data
Slices Code and Process
Partition Code

NUM_OF_PROCESSES Number of Processes Number of Processes

PROCESS_DATA_SLICES_
CD

Process Data Slices Code Process Data Slices Code
used by this Process ID in
this step

PROCESS_PARTITION_CD Process Partition Code Process Partition code used
by this Process ID in this
step

Table
Priority

Column
Order COLUMN_NAME DISPLAY_NAME DESCRIPTION

9 1 SYS_ID_NUM System ID Number Process ID System ID
Number

9 2 PROCESS_ENGINE_
CD

Process Engine Code Process Engine Code
that run this Process
ID

9 3 STEP_NAME Step Name The step of the
Process ID getting the
Process Data Slices
Code and Process
Partition Code

9 4 NUM_OF_
PROCESSES

Number of Processes Number of Processes

9 5 PROCESS_DATA_
SLICES_CD

Process Data Slices
Code

Process Data Slices
Code used by this
Process ID in this step

Specifying Multiprocessing Parameters

OFSA Multiprocessing 19-15

How to Specify Parameters
The setup of multiprocessing is broken down into the following steps:

■ Identify Assignment Level

■ Assign Unit of Work

■ Assign Worker Processes

■ Assign Unit of Work Servicing Methodology

For each step, the relevant multiprocessing parameters are described. Some
applications override the multiprocessing configuration in order to handle special
processing conditions. The Application Overrides section explains the special
processing conditions.

To avoid data entry errors, entering data into the OFSA multiprocessing parameter
tables in the following order:

1. OFSA_PROCESS_DATA_SLICES

2. OFSA_PROCESS_DATA_SLICES_DTL

3. OFSA_PROCESS_ID_RUN_OPTIONS

4. OFSA_PROCESS_ID_STEP_RUN_OPT

Identify Assignment Level
The SYS_ID_NUM and STEP_NAME columns in the OFSA_PROCESS_ID_STEP_
RUN table identify the Assignment Level for multiprocessing. In the SYS_ID_NUM
column you insert either a Process Engine Code or a specific SYS_ID_NUM for an
individual Process ID. In the STEP_NAME column, you insert one of the valid
STEP_NAME values.

The OFSA_PROCESS_ENGINE table identifies the valid values for the SYS_ID_
NUM column for OFSA multiprocessing for processing engine default settings.

The OFSA_CATALOG_OF_IDS table identifies the valid values for the SYS_ID_
NUM column for OFSA multiprocessing at the individual process ID level.

Note: You do not need to enter new data into OFSA_PROCESS_
DATA_SLICES and OFSA_PROCESS_DATA_SLICES_DTL unless
you are specifying customized Unit of Work definitions.

Specifying Multiprocessing Parameters

19-16 Oracle Financial Services Installation and Configuration Guide

Because an application can have all alternatives configured, it is important to
understand the order in which the application resolves the multiprocessing
parameter upon application processes execution. The order is:

1. Step of a Process ID for an engine

2. Process ID for an engine

3. Step of all Process IDs for an engine

4. All Process IDs for an engine

Step of a Process ID for an Engine
At this level, a specific Step of a Process ID for the Engine is processed using the
designated multiprocessing parameters.

In order to specify multiprocessing parameters for a specific Process ID, you must
first insert a record into OFSA_PROCESS_ID_RUN_OPTIONS to designate the
Processing Engine Code for that Process ID.

For this option set:

OFSA_PROCESS_ID_RUN_OPTIONS.SYS_ID_NUM =
OFSA_PROCESS_ID_RUN_OPTIONS.PROCESS_ENGINE_CD =
OFSA_PROCESS_ID_STEP_RUN_OPT.SYS_ID_NUM

AND

 OFSA_PROCESS_ID_STEP_RUN_OPT.STEP_NAME=’<Step Name>’

where <Step Name> conforms to the valid syntax specified by application. The list
of valid Step Names is described in Multiprocessing Assignment Levels.

Process ID for an Engine
At this level, a specific Process ID for the Engine is processed with the designated
multiprocessing parameters.

In order to specify multiprocessing parameters for a specific Process ID, you must
first insert a record into OFSA_PROCESS_ID_RUN_OPTIONS to designate the
Processing Engine Code for that Process ID.

For this option set:

OFSA_CATALOG_OF_IDS.SYS_ID_NUM =
OFSA_PROCESS_ID_RUN_OPTIONS.SYS_ID_NUM =
OFSA_PROCESS_ID_STEP_RUN_OPT.SYS_ID_NUM

Specifying Multiprocessing Parameters

OFSA Multiprocessing 19-17

AND

 OFSA_PROCESS_ID_STEP_RUN_OPT.STEP_NAME=’DEFAULT’

Step for all Process IDs for an Engine
At this level, a specific Step of the Process IDs for the Engine are processed using
the designated multiprocessing parameters.

For this option set:

OFSA_PROCESS_ID_RUN_OPTIONS.SYS_ID_NUM =
OFSA_PROCESS_ID_RUN_OPTIONS.PROCESS_ENGINE_CD =
OFSA_PROCESS_ID_STEP_RUN_OPT.SYS_ID_NUM

AND

 OFSA_PROCESS_ID_STEP_RUN_OPT.STEP_NAME=’<Step Name>’

where <Step Name> conforms to the valid syntax specified by application. The list
of valid Step Names is described in Multiprocessing Assignment Levels.

All Process IDs for an Engine
At this level, all Process IDs for the specified Engine are processed using the
designated multiprocessing parameters.

For this option set:

OFSA_PROCESS_ID_RUN_OPTIONS.SYS_ID_NUM =
OFSA_PROCESS_ID_RUN_OPTIONS.PROCESS_ENGINE_CD =
OFSA_PROCESS_ID_STEP_RUN_OPT.SYS_ID_NUM

 AND

 OFSA_PROCESS_ID_STEP_RUN_OPT.STEP_NAME=’DEFAULT’

Note: Risk Manager Process ID does not allow this configuration.

Specifying Multiprocessing Parameters

19-18 Oracle Financial Services Installation and Configuration Guide

Assign Unit of Work
For the Assignment Level entered into OFSA_PROCESS_ID_STEP_RUN_OPT, enter
a valid PROCESS_DATA_SLICES_CD value. Refer to Units of Work for information
regarding the PROCESS_DATA_SLICES_CD values.

Assign Worker Processes
For the Assignment Level entered into OFSA_PROCESS_ID_STEP_RUN_OPT, enter
an integer into the NUM_OF_PROCESSES field to specify the number of worker
processes.

Assign Unit of Work Servicing
For the Assignment Level enter into OFSA_PROCESS_IT_STEP_RUN_OPT, enter
either 0, 1, or 2 into the PROCESS_PARTITION_CD field to specify the Unit of Work
Servicing methodology. Refer to Unit of Work Servicing for information about what
each of these codes means. The only acceptable values for the PROCESS_
PARTITION_CD field are 0, 1, or 2. No other values are allowed.

Engine Overrides
For some conditions, the OFSA Processing Engines override the multiprocessing
definition for an assignment level. The overrides are as follows:

Transfer Pricing
Transfer Pricing configures the data slicing columns automatically using the
Product Leaf Column defined in the active Configuration ID as the default slicing
column for all runs. However, different steps in the same processing run can use
different additional slicing columns. Bulk and propagation calculation steps, as well
as Non-Cash Flow and Ledger Stat pricing/migration runs use the ORG_UNIT_ID
column as an additional slicing column. The Cash Flow Transfer Pricing step also
uses the ORG_UNIT_ID column if not combined with Option Cost Calculations. For
Option Cost Calculation (including combined Transfer Pricing/Option Cost
Calculation), the engine employs ORIGINATION_DATE as the primary slicing
column with the Product Leaf Column as secondary.

Transformation ID
To prevent aggregation errors resulting from data slices that may conflict with the
dimension filtering feature, the Transformation ID ignores the OFSA_PROCESS_
ID_STEP_RUN_OPT.PROCESS_DATA_SLICES_CD. The Transformation ID
automatically configures the data slicing columns, ORG_UNIT_ID and COMMON_

Tuning Multiprocessing

OFSA Multiprocessing 19-19

COA_ID. If either column is excluded in the dimension filter, then it is not used as a
data slicing column.

To prevent aggregation errors resulting from table partitions that may conflict with
the dimension filtering feature, the Transformation ID ignores OFSA_PROCESS_
ID_STEP_RUN_OPT.PROCESS_PARTITION_CD.

Risk Manager
Ignores OFSA_PROCESS_ID_STEP_RUN_OPT.PROCESS_PARTITION_CD because
of the need to order units of work specifically. (that is, the same leaves can exist in
more than one table and/or table partition).

Risk Manager configures the data slicing columns automatically using the Product
Leaf Column defined in the active Configuration ID as the default slicing column
for all runs. The Risk Manager engine adds additional slicing column as follows
based upon the parameters specified in the Risk Manager Process ID:

■ If Product/Organizational Unit functional dimensions are selected, the engine
adds ORG_UNIT_ID as an additional slicing column.

■ If Product/Currency functional dimensions are selected, the engine adds ISO_
CURRENCY_CD as an additional slicing column.

■ If Product/Organizational/Currency functional dimensions are selected, the
engine adds ORG_UNIT_ID and ISO_CURRENCY_CD as additional slicing
columns.

Columns specified in PROCESS_DATA_SLICES_DTL that are already implicitly
added by the RM engine (that is, ORG_UNIT_ID if Product/Organizational Unit
functional dimensions are selected) are ignored. All other columns specified in this
tables are added to the slicing column list.

Performance Analyzer
Ignores OFSA_PROCESS_ID_STEP_RUN_OPT.PROCESS_PARTITION_CD for
additive set operation because of the need to order units of work specifically.

Tuning Multiprocessing
Tuning for optimal multiprocessing settings is an exercise similar to tuning a
database. It involves experimentation with different settings under different load
conditions

Tuning Multiprocessing

19-20 Oracle Financial Services Installation and Configuration Guide

.Database Bound versus Engine Bound Jobs
OFSA jobs fall into the following two categories:

■ Database bound—Those jobs that spend more time within database
manipulations

■ Engine bound—Those jobs whose calculations are complex, thus the time spent
with database operations is small compared to the amount of time doing
calculations.

The following table lists OFSA jobs by Processing Engine and identifies whether the
job is usually database bound or Engine bound.

Application Job Type
Generic
Job Type

OFSA/DB
Bound

MP
Enabled Comments

Balance & Control Cash Flow Edits Row by
Row

DB or OFSA Yes If a large number of
corrections need to be done,
this may become OFSA
bound

Balance & Control Row by Row Row by
Row

DB or OFSA Yes As the number of rules in the
correction processing ID
increase, the process may
become OFSA bound

Balance & Control Bulk Bulk DB Yes

Performance Analyzer Straight Ledger Row by
Row

DB Yes No percent or table ID.
Ledger_Stat reading is MP
enabled, Ledger_Stat writing
is not.

Performance Analyzer Percent Distribution Row by
Row

DB Yes

Performance Analyzer Table ID Row by
Row

DB Yes

Performance Analyzer Lookup Table ID Bulk DB Yes

Performance Analyzer Detail RBR/Bulk DB Yes Row by Row for Ledger_Stat
allocation, update to detail
table is bulk

Transfer Pricing Rate Migration Bulk DB Yes

Transfer Pricing Bulk Transfer Pricing Bulk DB Yes

Transfer Pricing Non-Cash Flow
Transfer Pricing

Row by
Row

DB Yes

Transfer Pricing Cash Flow Transfer
Pricing

Row by
Row

OFSA Yes

Tuning Multiprocessing

OFSA Multiprocessing 19-21

The scalability of database bound jobs is largely determined by size of the database
server. The scalability of Engine bound jobs is determined by the size of the
application server.

Tuning the OFSA Database from the Application Layer
Despite the many multiprocessing options, tuning the OFSA database from the
application layer is achieved by following a simple process. The process is as
follows:

1. Identify the OFSA job types that are used by your organization.

2. For each job type, time the runs for a series of OFSA_PROCESS_ID_STEP_
RUN_OPT.NUM_OF_PROCESSES settings.

3. Based on the results, determine the appropriate setting per application.

In general, it is recommended that for each process type, start with a OFSA_
PROCESS_ID_STEP_RUN_OPT.NUM_OF_PROCESSES setting of 1, and then
double the setting until it is equal to the number of processors available on the
application server for application bound jobs, and equal to the number of
processors available on the database server for database bound jobs.

Transfer Pricing Ledger_Stat Migration Row by
Row

DB Yes

Risk Manager Detail Processing
(Current position, Gap,
Market Value)

Row by
Row

OFSA Yes All processing except
Formula Leaves and Auto
Balancing

Risk Manager Formula Leaves Row by
Row

OFSA No

Risk Manager Auto Balancing Row by
Row

OFSA No

Transformation Ledger Row by
Row

DB Yes Dimension Filtering
(aggregation) and complex
OFSA filters affect
performance

Transformation Risk Manager Row by row DB Yes Dimension Filtering
(aggregation) affects
performance

Transformation Roll up Other DB No

Application Job Type
Generic
Job Type

OFSA/DB
Bound

MP
Enabled Comments

Tuning Multiprocessing

19-22 Oracle Financial Services Installation and Configuration Guide

Generally, as the OFSA_PROCESS_ID_STEP_RUN_OPT.NUM_OF_PROCESSES
setting is increased, you can expect performance improvements up to a certain
point. After that, processing times level off and then start increasing. Testing has
shown that for all applications, the point at which processing time starts to increase
occurs after the OFSA_PROCESS_ID_STEP_RUN_OPT.NUM_OF_PROCESSES
setting has exceeded the number of processors on the machine. Also, as the
NumProcesses setting approaches the number of processors, the performance
improvements are minimal.

Special considerations need to be made when multiple OFSA jobs are run at the
same time. Different types of jobs use resources differently. You may want to look
into a scheduling tool to help you schedule dissimilar jobs to run at different times.

Ledger_Stat Updating
Transfer Pricing, Ledger_Stat migration and Performance Analyzer update the
LEDGER_STAT table using an update/insert methodology where an update is
attempted and, if no rows are affected, an insert is performed. This methodology
prevents OFSA from performing Ledger_Stat updates in parallel. The result is that
when Ledger_Stat is updated (either because the Ledger_Stat buffer has filled or the
process has ended) the updating is done by only one process. All other processes
must wait for the updating to be completed.The result is that as the ratio between
rows written to Ledger_Stat and rows read to Ledger_Stat increases, the time spent
writing Ledger_Stat dominates the time spent reading, resulting in drastically
reduced scalability. Testing indicates that many Performance Analyzer allocations
fall into this category.

Special Considerations
Because of the nature of parallel processing performed by OFSA, different processes
tend to need to access the same tables at the same time. Unless care is taken in
designing the layout of the database tables, this can lead to I/O contention, which
in turn, can reduce scalability.

Note: You may need to change the OFSA_PROCESS_ID_STEP_
RUN_OPT.NUM_OF_PROCESSES settings for applications at
different stages in the production cycle to achieve optimal
performance.

Migration from OFSA 3.5/4.0

OFSA Multiprocessing 19-23

Migration from OFSA 3.5/4.0
Multiprocessing settings are not preserved when upgrading from a previous release
of OFSA to FDM 4.5. The FDM 4.5 Database Upgrade Process reverts all
multiprocessing settings to default values. Because the default values for
multiprocessing in Release 4.5 are not the same as the default multiprocessing
settings in OFSA 3.5/4.0, Oracle recommends that you review this section after you
complete your 4.5 upgrade to identify potential performance issues.

Upgrading from OFSA 3.5/4.0 Default Multiprocessing
This section describes how to implement multiprocessing in Release 4.5 to replicate
the default settings of OFSA 3.5/4.0. If you did not change the default Org/Product
Leaf Partitioning or Thread Division multiprocessing options in OFSA 3.5/4.0, then
follow the instructions in this section to replicate these settings in your FDM 4.5
database.

The default WHERE conditions for SQL generated by the OFSA processing engines
in Release 4.5 is different than the default generated by the OFSA 3.5/4.0
multiprocessing implementation. The 4.5 default Unit of Work definitions, which
determine what columns are used in the WHERE conditions, are not the same as the
default Unit of Work definitions in OFSA 3.5/4.0. This is true even if you did not
customize your multiprocessing in OFSA 3.5/4.0.

By updating the OFSA_PROCESS_ID_STEP_RUN_OPT table to appear, you set the
4.5 multiprocessing options to replicate the OFSA 3.5/4.0 default settings.

SYS_ID_
NUM STEP_NAME

NUM_OF_
PROCESSES

PROCESS_
DATA_SLICE_
CD

PROCESS_
PARTITION_CD

0 DEFAULT ?? 1 0

2 Client Data by Prod ?? 1 0

2 Client Data by Prod, Currency ?? 1 0

2 Client Data by Prod, Org ?? 1 0

2 Monte Carlo Client Data ?? 1 0

3 DEFAULT ?? 1 0

4 DEFAULT ?? 1 0

14 DEFAULT ?? 1 0

Migration from OFSA 3.5/4.0

19-24 Oracle Financial Services Installation and Configuration Guide

Set the NUM_OF_PROCESSES value to equal the NumProcesses parameter that
you used in OFSA 3.5/4.0. This is the Number of Worker Processes employed for
the multiprocessing operations. In OFSA 3.5/4.0, this parameter is found in the
[parallel] section of each application-specific .INI file on the server.

By setting the columns in the OFSA_PROCESS_ID_STEP_RUN_OPT table to these
values, the OFSA 4.5 Knowledge Engines processes using the same multiprocessing
parameters as the default settings from OFSA 3.5/4.0.

Upgrading from OFSA 3.5/4.0 Customized Multiprocessing
This section describes how to implement in Release 4.5 any customized Unit of
Work definitions or Thread Divisions settings from OFSA 3.5/4.0.

In order to maintain equivalent performance for Release 4.5 in a customized
multiprocessing environment, you must either re-tune based upon the new
(default) SQL generated from Release 4.5, or adjust the 4.5 multiprocessing options
to replicate the behavior for your OFSA 3.5/4.0 implementation. Because the new
multiprocessing parameter format for Release 4.5 does not directly correspond to
the way that multiprocessing was specified in OFSA 3.5/4.0, it may be simpler to
re-tune your database to accommodate any OFSA Engine SQL changes caused by
the new default 4.5 multiprocessing parameters. However, if you convert your
previous multiprocessing settings into FDM 4.5 instead of re-tuning, the following
section provides information to assist you in this conversion. This section describes
how multiprocessing in OFSA 3.5/4.0 works in comparison to Release 4.5. There are
3 different options to be examined:

■ Units of Work

■ Unit of Work Servicing

■ Worker Processes

Units of Work
The first step in re-implementing multiprocessing settings from an OFSA 3.5/4.0
database into FDM 4.5 is to identify any Unit of Work definitions that are not

Note: Regardless of the approach you select, Oracle recommends
that you reserve sufficient time to address database and application
tuning for 4.5 after completing your upgrade. The issues involved
require some investigation and experimentation in order to achieve
the desired performance.

Migration from OFSA 3.5/4.0

OFSA Multiprocessing 19-25

seeded in FDM 4.5. Once you have identified all of the Unit of Work definitions
used in your OFSA 3.5/4.0 implementation (both seeded and custom), you need to
assign the appropriate definitions to your processes in the FDM 4.5 database.

Identifying Custom Unit of Work Definitions
OFSA 3.5/4.0 allowed up to two columns to be used for the Unit of Work definition.
These columns were specified in either the database (the TSER_APP_PROCESS
table) or in the application-specific INI file.

When specified in the database, the Unit of Work columns were defined by setting
the PARTITION_CD column to 1 (On) or 0 (Off) for the ORG Column Type and the
PROD Column Type in TSER_APP_PROCESS. The ORG Column Type was defined
as the ORG_UNIT_ID column. The PROD Column Type was determined based
upon the specific OFS application:

When specified in the application-specific .INI file, the columns were identified by
setting specific parameters = 0 (Off) or 1 (On). These parameters were:

Application Product Leaf Column

Balance & Control - Data Correction Processing COMMON_COA_ID

Performance Analyzer - Allocation ID COMMON_COA_ID

Risk Manager - Process ID Product Leaf in active Configuration ID

Transfer Pricing - Process ID Product Leaf in active Configuration ID

Transformation Engine COMMON_COA_ID

Leaf Setting Description

RowOrgLeaf 0 Use org leaf for calculating units of work for Row by Row
processing.

1 Use org leaf for calculating units of work for Row by Row
processing

RowProdLeaf 0 Do not use product leaf for calculating units of work for Row
by Row processing

1 Use product leaf for calculating units of work for Row by Row
processing

Migration from OFSA 3.5/4.0

19-26 Oracle Financial Services Installation and Configuration Guide

Again, the Org Leaf is the ORG_UNIT_ID column and the Prod Leaf is determined
based upon the application.

In order to identify the custom Unit of Work settings from OFSA 3.5/4.0, analyze
the assignments in TSER_APP_PROCESS or the application-specific INI file for each
application. Any partitioned columns in OFSA 3.5/4.0 for which a PROCESS_
DATA_SLICES_CD value is not already provided in FDM 4.5 require a customized
Unit of Work definition.

For example, assume the following data in TSER_APP_PROCESS:

Example 1

The assignments mean that the user is processing the Allocation ID engine using
ORG_UNIT_ID and COMMON_COA_ID as the partition definition for all
processes, both Row by Row and Bulk (this is actually the default for OFSA
3.5/4.0). The TSER_PRODUCT values from OFSA 3.5/4.0 are the same as the
PROCESS_ENGINE_CD values of Release 4.5. In this case, TSER_PRODUCT = 0
indicates Performance Analyzer.

Unit of Work definitions for FDM 4.5 are specified in the OFSA_PROCESS_DATA_
SLICES and OFSA_PROCESS_DATA_SLICES_DTL tables. For every unique Unit of
Work combination used in OFSA 3.5/4.0, you need to populate these tables
appropriately.

BulkOrgLeaf 0 Do not use org leaf for calculating units of work for Bulk
processing

1 Use org leaf for calculating units of work for Bulk processing

BulkProdLeaf 0 Do not use Prod leaf for calculating units of work for Bulk
processing

1 Use Prod leaf for calculating units of work for Bulk processing

TSER_PRODUCT PROCESS_TYPE COLUMN_TYPE PARTITION_CD

0 RBR ORG 1

0 RBR PROD 1

0 BULK ORG 1

0 BULK PROD 1

Leaf Setting Description

Migration from OFSA 3.5/4.0

OFSA Multiprocessing 19-27

For Example 1, where the user is processing the Allocation engine with the default
Unit of Work definition (ORG_UNIT_ID, COMMON_COA_ID), there is no need to
create a new PROCESS_DATA_SLICES_CD value. As you can see by examining the
OFSA_PROCESS_DATA_SLICES_DTL table, FDM 4.5 seeds a PROCESS_DATA_
SLICES_CD with (ORG_UNIT_ID, COMMON_COA_ID) as the columns used for
the Unit of Work definition

However, because the default PROCESS_DATA_SLICES_CD assignment for
Performance Analyzer is 3 (COMMON_COA_ID), you need to update the OFSA_
PROCESS_ID_STEP_RUN_OPT table with the (ORG_UNIT_ID, COMMON_COA_
ID) PROCESS_DATA_SLICES_CD value See Assigning Unit of Work Definitions for
details on how to perform this assignment.

Following is another example:

Example 2

In this example, the user is processing Risk Manager with the default Unit of Work
definition. However, the Product Leaf Column is not always COMMON_COA_ID.
Rather, it is determined based upon the active Configuration ID. For this example,
assume that the active Configuration ID is using RM_COA_ID as the Product Leaf.
The Unit of Work is therefore (ORG_UNIT_ID, RM_COA_ID). Since FDM 4.5 does
not seed such a definition into OFSA_PROCESS_DATA_SLICES_DTL, we need to
create a customized Unit of Work definition for FDM 4.5.

To do this, insert data into the OFSA_PROCESS_DATA_SLICES and OFSA_
PROCESS_DATA_SLICES_DTL tables as follows:

OFSA_PROCESS_DATA_SLICES

TSER_PRODUCT PROCESS_TYPE COLUMN_TYPE PARTITION_CD

2 RBR ORG 1

2 RBR PROD 1

2 BULK ORG 1

2 BULK PROD 1

PROCESS_DATA_SLICES_CD

4

Migration from OFSA 3.5/4.0

19-28 Oracle Financial Services Installation and Configuration Guide

OFSA_PROCESS_DATA_SLICES_DTL

Assigning Unit of Work Definitions
Once you have identified (and if necessary created) the Unit of Work definitions
used in your OFSA 3.5/4.0 implementation, you must assign them to the
appropriate processes and processing engines. In OFSA 3.5/4.0, Unit of Work
definitions could be assigned only at the engine level for two categories of
processing: Row by Row and Bulk. FDM 4.5 provides much more flexibility,
enabling you to specify Unit of Work definitions at the engine level, engine step
level, or individual ID level. However, none of these levels corresponds directly
with the Row by Row and Bulk options available in OFSA 3.5/4.0.

The strategy for converting the OFSA 3.5/4.0 multiprocessing settings to FDM 4.5
varies depending upon the application:

Non-Risk Manager Processes
The same strategy applies for the following applications:

■ Balance & Control

■ Performance Analyzer

■ Transfer Pricing

■ Transformation Engine

If you used the same Unit of Work Definition for both Bulk and Row by Row
processing in OFSA 3.5/4.0 (on an application by application basis), then assign that
definition to the DEFAULT Step Name in OFSA_PROCESS_ID_STEP_RUN_OPT for
SYS_ID_NUM=0 (Performance Analyzer), 3 (Transfer Pricing), 4 (Balance &
Control) or 14 (Transformation Engine). This sets all IDs of the specified application
to run using that assigned Unit of Work definition.

If you did NOT use the same Unit of Work Definition for both Bulk and Row by
Row processing, then assign the most commonly used Unit of Work definition to
the DEFAULT Step Name for appropriate SYS_ID_NUM. For example, if the
majority of your Allocation IDs are Bulk processing, then assign that Unit of Work
definition as the DEFAULT for SYS_ID_NUM=0. Then, for each of your Row by

PROCESS_DATA_
SLICES_CD

PROCESS_DATA_
SLICES_SEQ COLUMN_NAME

4 1 ORG_UNIT_ID

4 2 RM_COA_ID

Migration from OFSA 3.5/4.0

OFSA Multiprocessing 19-29

Row Allocations, create a customized assignment in OFSA_PROCESS_ID_STEP_
RUN_OPT (for the specific SYS_ID_NUM values) assigning the Row by Row Unit
of Work definition to those IDs.

Risk Manager Processes
For Risk Manager, only Row by Row processing applies. Therefore, assign the
OFSA 3.5/4.0 Row by Row Unit of Work definition to the following Step Names in
OFSA_PROCESS_ID_STEP_RUN_OPT for SYS_ID_NUM=2 (Risk Manager):

■ Client Data by Prod

■ Client Data by Prod, Currency

■ Monte Carlo Client Data

■ Client Data by Prod, Org

This sets all Risk Manager Process IDs to run using that assigned Unit of Work
definition.

Unit of Work Servicing
Unit of Work Servicing in Release 4.5 is similar in concept to the Thread Division
concept of OFSA 3.5/4.0, although it is not exactly the same. The Unit of Work
Servicing feature in 4.5 works directly with distinct table partitions, rather than only
with distinct tables. However, despite this difference, the Thread Division settings
from OFSA 3.5/4.0 are equivalent to the new Unit of Work Servicing settings for
Release 4.5.

Thread Division in OFSA 3.5/4.0 was specified in the application-specific INI files
on the server. The default Thread Division for OFSA 3.5/4.0 was Normal
(ThreadDivision = 0), which is equivalent to the Single Servicing Unit of Work
Servicing methodology for Release 4.5. If you did not deviate from the default
Thread Division in OFSA 3.5/4.0, you do not need to perform any conversion to 4.5
for this setting, since Single Servicing is the default Unit of Work Servicing
methodology for Release 4.5.

However, if you did deviate from the default Thread Division setting for any of the
applications, then you need to specify the equivalent Unit of Work Servicing value
in the PROCESS_PARTITION_CD column of OFSA_PROCESS_ID_STEP_RUN_

Examples

19-30 Oracle Financial Services Installation and Configuration Guide

OPT. The Unit of Work Servicing codes are the same values as the Thread Division
codes:

Since Thread Division codes were assigned at an application basis, update the
PROCESS_PARTITION_CD column for all processes of a given application with the
desired Unit of Work Servicing. For example, if the Thread Division for 3.5/4.0
Performance Analyzer was set to 1 - Preferred, then set the PROCESS_PARTITION_
CD=1 in OFSA_PROCESS_ID_SET_RUN_OPT for all Performance Analyzer entries,
which includes SYS_ID_NUM=0 (Step Name=DEFAULT) as well as any other
entries for specific Allocation SYS_ID_NUM values or Steps.

Worker Processes
The Worker Processes concept in Release 4.5 is equivalent to the NumProcesses
setting in the 3.5/4.0 application-specific .INI files. Since the NumProcesses setting
was assigned at an application basis in 3.5/4.0, update the NUM_OF_PROCESSES
column for all processes of a given application with the desired Worker Processes
value. For example, if the NumProcesses for 3.5/4.0 Risk Manager was set to 4, then
set the NUM_OF_PROCESSES = 4 in OFSA_PROCESS_ID_SET_RUN_OPT for all
Risk Manager entries. These include SYS_ID_NUM=2 for all Steps, as well as any
other entries for specific Risk Manager SYS_ID_NUM values or Steps that are also
in the OFSA_PROCESS_ID_SET_RUN_OPT table.

Examples
The following tables illustrate examples of valid multiprocessing parameters:

Parameters for OFSA_PROCESS_ID_STEP_RUN_OPT

Thread Division Code Unit of Work Servicing

0 (’Normal’) is equivalent to 0 (’Single Servicing’)

1 (’Preferred’) is equivalent to 1 (’Cooperative Servicing’)

2 (’Required’) is equivalent to 2 (’Dedicated Servicing’)

SYS_ID_NUM STEP_NAME
NUM_OF_
PROCESSES

PROCESS_
DATA_SLICES_
CD

PROCESS_
PARTITION_CD

0 DEFAULT 1 to 100 1 to 100 0, 1, or 2

Examples

OFSA Multiprocessing 19-31

###123 DEFAULT 1 to 100 1 to 100 0, 1, or 2

###123 Page:<space>### 1 to 100 1 to 100 0, 1, or 2

0 Page:<space>### 1 to 100 1 to 100 0, 1, or 2

2 Client Data by
Prod

1 to 100 1 to 100 0, 1, or 2

2 "Client Data by
Prod, Org "

1 to 100 1 to 100 0, 1, or 2

2 "Client Data by
Prod, Currency"

1 to 100 1 to 100 0, 1, or 2

2 Monte Carlo
client data

1 to 100 1 to 100 0, 1, or 2

###456 Client Data by
Prod

1 to 100 1 to 100 0, 1, or 2

###456 "Client Data by
Prod, Org "

1 to 100 1 to 100 0, 1, or 2

###456 "Client Data by
Prod, Currency"

1 to 100 1 to 100 0, 1, or 2

###456 Monte Carlo
client data

1 to 100 1 to 100 0, 1, or 2

3 DEFAULT 1 to 100 1 to 100 0, 1, or 2

###789 DEFAULT 1 to 100 1 to 100 0, 1, or 2

4 DEFAULT 1 to 100 1 to 100 0, 1, or 2

4 Bulk Statements 1 to 100 1 to 100 0, 1, or 2

4 Cash Flow Edits 1 to 100 1 to 100 0, 1, or 2

4 All Rules 1 to 100 1 to 100 0, 1, or 2

###321 DEFAULT 1 to 100 1 to 100 0, 1, or 2

###321 Bulk Statements 1 to 100 1 to 100 0, 1, or 2

###321 Cash Flow Edits 1 to 100 1 to 100 0, 1, or 2

###321 All Rules 1 to 100 1 to 100 0, 1, or 2

14 DEFAULT 1 to 100 1 to 100 0, 1, or 2

SYS_ID_NUM STEP_NAME
NUM_OF_
PROCESSES

PROCESS_
DATA_SLICES_
CD

PROCESS_
PARTITION_CD

Examples

19-32 Oracle Financial Services Installation and Configuration Guide

###654 DEFAULT 1 to 100 1 to 100 0, 1, or 2

SYS_ID_NUM STEP_NAME
NUM_OF_
PROCESSES

PROCESS_
DATA_SLICES_
CD

PROCESS_
PARTITION_CD

Request Queue 20-1

20
Request Queue

This chapter provides information on both single-host and multi-host Request
Queue.

Single-Host Request Queue
Request Queue links a remote client application with the UNIX-based server to
spawn knowledge engines on the server. This frees the client for other tasks while
the knowledge engine is performing its task.

Without Request Queue in place remote clients cannot spawn knowledge engines
on the server.

Request Queue also maintains a log file to track knowledge engine requests,
provides status updates for each request and returns error messages if a problem
arises in the spawning or processing of a request.

Request Queue interacts with three hardware components. These include the
remote client, the Oracle Financial Services (OFS) application server and the
database server. The knowledge engine is run on the application server; the
database instance is located on the database server.

Single-Host Request Queue

20-2 Oracle Financial Services Installation and Configuration Guide

The following diagram illustrates the relationship between the remote client, the
application server and the database server.

This illustration separates the application and database servers into two entities,
however both the application and the database instance can reside on the same
server.

Using Request Queue
You can run only one instance of Request Queue against a database.

Spawning a knowledge engine on the server follows a three-step process, as
follows:

1. The user places a request, through the remote client application, to the OFSA_
REQUEST_QUEUE table, which is located in the Oracle Financial Services
Applications (OFSA) database.

2. Request Queue retrieves the request from the table and spawns the knowledge
engine.

3. Request Queue updates the exit code and status of the application after the
process is completed.

Application Server
(OFSA Application

Knowledge Engines)

Database Server
(Oracle Database

Instance and Data)

Client
PC

Single-Host Request Queue

Request Queue 20-3

The function of Request Queue is shown in the following diagram.

Error Messages
(Appear in Server)

Status
(Appears in Server

Status Window)

Launch Process
Request through
Request Queue

Client

OFSA Client Applications‡

Server

RDBMS

OFSA Results
Queue

Request Queue OFSA Server
Applications*

OFSA Request
Queue

* Included under OFSA server applications are the following: Balance and Control,
 Performance Analyzer, Risk Manager, Transfer Pricing, Transformation and RQ Test

‡ Included under OFSA client applications are the following: Balance and Control,
 Performance Analyzer, Risk Manager and Transfer Pricing

Single-Host Request Queue

20-4 Oracle Financial Services Installation and Configuration Guide

Launching Request Queue
Request Queue is not automatically activated when the OFS applications are
installed on the server and client. Activating Request Queue is a manual process,
performed by a System Administrator or DBA, using either the rq command, which
is a UNIX shell script designed to set the required environment variables
automatically, or by launching Request Queue directly.

If you decide to launch Request Queue directly you need to set up the environment
variables manually, according to the requirements of the server vendor. Use the rq
script as a reference for the variables you need to address. See Chapter 6, "UNIX
Server Installation and Configuration" for detailed information on setting up the
server environment variables specific to the server on which you are installing the
OFSA server-centric software.

Using the rq Script to Set Up Request Queue
The command line interface of Request Queue is used to set the operational
parameters of the application and, when necessary, to kill the Request Queue
currently running against the database.

Once the operational parameters have been set they remain in place as long as the
current Request Queue application is active. If you want to change these parameters
you need to kill the current Request Queue application, reset the operational
parameters using the command line interface and then launch Request Queue
again.

All of the command line switches are listed in the following two tables.

Note: Oracle recommends that the person responsible for
launching Request Queue is also responsible for maintaining the
applications.

Single-Host Request Queue

Request Queue 20-5

Setting Operational Parameters

This table includes switches used to set the operational parameters of Request
Queue.

Command Switches Description Mandatory/Optional

-b Runs Request Queue as a background
process.

Request Queue runs in the foreground if
-b is omitted from the command line.
Running Request Queue in the
foreground locks the terminal from
which Request Queue is launched until
this instance of Request Queue is killed.

Optional

-m num_blocks This switch sets the maximum size of the
logfile (in 1024 byte blocks).

The default setting is 512. The logfile
flushes lines of text at the beginning of
the file when the limit is reached.

Setting this value to zero results in
unlimited logfile size.

Optional

-c num_blocks Sets the amount of text (in 1024 byte
blocks) retained in the logfile after the
maximum size has been reached and text
is flushed from the beginning of the file.

This setting specifies the amount of text
retained in the logfile, not the amount of
text to be flushed.

The default setting is 256. If this switch is
not set, the text retained in the logfile
equals 256.

Optional

Single-Host Request Queue

20-6 Oracle Financial Services Installation and Configuration Guide

-i interval Sets the time interval (in seconds) for
Request Queue to poll the Request Queue
table. The default setting is 3 seconds.

The polling interval affects the number of
seconds a request sits in the Request
Queue table before it is initiated.

Sometimes the initiation of a request does
not occur within the time interval.
Generally, the cause of this is a greater
number of requests in the table than
Request Queue can initiate within the
polling interval.

This setting also works with the
ServerTimeOut parameter in the client
ofs.ini file to affect Request Queue
behavior on the client. Refer to Chapter 7,
"Client Software Installation and
Configuration" for information about
how the -i parameter affects the
ServerTimeOut setting.

Optional

database_alias This is the name (alias) of the database
that Request Queue polls.

If the specified alias is referenced in the
ofs.ini file, the database connectivity
parameters from that file are used.
Otherwise, the parameters in the
tnsnames file are used.

Mandatory

logfile Sets up the log file that Request Queue
uses to log application and process
information as well as error messages for
each spawned knowledge engine. Refer
to the information described in the -l
switch, as it affects the logfile output.

All information, including error
messages, for a spawned knowledge
engine runs in the background and will
be lost if a log file is not specified.

For a spawned knowledge engine run in
the foreground only, the information
returned to the window is available to the
user. This status information is
continually flushed as additional status
information is returned to the window.

Optional

Command Switches Description Mandatory/Optional

Single-Host Request Queue

Request Queue 20-7

-l
{remove|keep|none}

remove: Remove output files after
successful completion of process. If
process does not complete successfully (a
non-zero return status) the file is not
removed. Remove is the default behavior.

keep: Keep files. Do not delete them on
successful completion.

none: Do not use separate output files,
log all output into the rq log.

Command Switches Description Mandatory/Optional

Single-Host Request Queue

20-8 Oracle Financial Services Installation and Configuration Guide

Killing a Previously Launched Request Queue Instance

This table includes switches used to kill a previously launched Request Queue
application.

Killing a Request Queue process does not necessarily result in the process
immediately terminating. The process does not exit until all child processes that it is
monitoring have ended. This is true even when the -K option is used. In rare
situations, some child processes may not respond properly to the message to
terminate and the child processes need to be killed manually using the kill -9 <pid>
UNIX command (where <pid> is the process ID of the child process).

If a Request Queue refuses to terminate, look for child processes that are blocking
the termination and kill them with the kill -9 command. Once all child processes
have terminated, Request Queue exits. If you kill a Request Queue instance with the
kill -9 command, process statuses in the OFSA_REQUEST_QUEUE are not updated
upon process completion.

Command Switches Description Optional/Mandatory

-n Instructs a newly launched Request Queue
to exit if it encounters a previously launched
Request Queue running against the target
database.

Optional

-k Kills a previously launched Request Queue
after all spawned child processes are
completed.

Optional

-K Kills a previously launched Request Queue
as well as all spawned child processes.

Optional

-w seconds Specifies for Request Queue to wait for the
existing (running) Request Queue to exit.
The optional seconds parameter specifies the
maximum amount of time to wait. If the
(running) Request Queue has not exited by
the specified time, the newly launched
Request Queue terminates.

Optional

Note: Note that once a Request Queue instance is killed a new
Request Queue needs to be launched from the command line.

Single-Host Request Queue

Request Queue 20-9

OFS.INI Settings
There are a few settings in the OFS.INI file that control the behavior of Request
Queue.

[OFSRQ]

Command Line Examples
The following five examples show how the command line switches are used to
establish operational parameters or kill a previously launched Request Queue
instance.

The five examples include:

■ Launching Request Queue in the foreground without a log file

■ Launching Request Queue in the background with a log file.

■ Launching Request Queue in the background with a log file, including
specifications for the maximum size of the file and the amount of logged-in
information to be retained after flushing.

■ Launching Request Queue in the foreground without a log file but with a
previously launched Request Queue, that was not anticipated, running against
the targeted database.

■ Killing a previously launched Request Queue instance using kill and wait
switches and then launching a new Request Queue instance.

Example 1

Launching Request Queue in the Foreground Without a Log File

1. Choose an alias for the database that this instance of Request Queue will poll.
(In this example the database alias is Production).

WorkingDirectory Sets the location for all log files for Request Queue and the
applications

MaxFileSize See -m in the "Setting Operational Parameters"section of this
chapter.

IdealFileSize See -c in the "Setting Operational Parameters" section of this
chapter.

Single-Host Request Queue

20-10 Oracle Financial Services Installation and Configuration Guide

2. Type rq Production in the command line and press Enter.

3. Type your User ID in the login prompt and press Enter.

4. Type your password in the login prompt and press Enter.

Example 2

Launching Request Queue in the Background With a Log File

1. Choose an alias for the database that this instance of Request Queue will poll.
(In this example the database alias is Production).

2. Type rq -b Production prod.log in the command line and press.

Choosing the -b switch instructs Request Queue to run in the background. The
name selected for the log file is prod.log.

The following message appears if Request Queue cannot create the log file:

ofsrq: can’t open file logfile, errno = a_errno

The a_errno message is returned as a number that corresponds to the UNIX
system error number for the reason the file creation failed. You have to correct
the problem before you can proceed. After making the correction, proceed to
the next step.

3. Type your User ID in the login prompt and press Enter.

4. Type your password in the login prompt and press Enter.

Example 3

Launching Request Queue in the background with a log file and specifications for
the maximum size of the file and the amount of logged-in information to be
retained after flushing.

1. Choose an alias for the database that this instance of Request Queue will poll.
(In this example the database alias is Production).

2. Type rq -b -m 512 -c 256 Production prod.log in the command line
and press Enter.

The -b command instructs Request Queue to run in the background.

Single-Host Request Queue

Request Queue 20-11

The -m command, with a parameter of 512, sets the maximum size of the log
file to 512kb (1024 byte blocks). When the log file grows to 512kb, it is flushed to
the ideal size (-c switch).

The -c command, with a parameter of 256, sets the retained logged-in
processes, after flushing, to 256kb (1024 byte blocks).

The prod.log command is the name assigned to the log file.

3. Type your User ID in the login prompt and press Enter.

4. Type your password in the login prompt and press Enter.

Example 4

Launching Request Queue in the foreground without a log file but with a
previously launched Request Queue, that was not anticipated, running against the
targeted database.

1. Choose an alias for the database that this instance of Request Queue will poll.
(In this example the database alias is Production).

2. Type rq Production in the command line and press Enter.

Because only one Request Queue instance can be running against a database the
following message appears:

OFSA Version X.XX.XXX
Request Queue Release X.XX
Copyright p Oracle Corporation 1995-1998
ofsrq is already running as pid 10854 on database Db1, what shall I do?
(K)ill other process and children
(k)ill other process
(A)bort this process

The number for the OFSA release installed on your system and the Request
Queue release appears in place of the “x”s. In a typical set up the UNIX Process
ID (pid) number is assigned by the operating system and, for Request Queue,
can be any number between 101 and 29999. In the example, the operating
system assigned a pid of 10854.

Database Db 1 matches the alias Production in the ofs.ini file.

Single-Host Request Queue

20-12 Oracle Financial Services Installation and Configuration Guide

3. Select one of the following three switches provided:

4. If you abort the launching of the new Request Queue instance the current
instance continues operating without interruption.

5. If you kill the previously launched Request Queue instance you need to return
to the command line to launch a new Request Queue instance.

6. Type rq Production in the command line and press Enter.

7. Type your User ID in the login prompt and press Enter.

8. Type your password in the login prompt and press Enter.

Example 5

Killing a previously launched Request Queue instance using kill and wait switches
and then launching a new Request Queue instance

1. Choose an alias for the database that this instance of Request Queue Request
Queue will poll. (In this example the database alias is Production).

2. Type rq -K -w 30 Production in the command line and press Enter

This example uses the -K command, which terminates the current Request
Queue instance and all spawned child processes associated with that Request
Queue instance.

K (uppercase) This terminates Request Queue 10854 immediately,
including all child processes spawned by this Request Queue
instance that are currently running.

k (lowercase) This kills Request Queue 10854 after the spawned child
processes currently running have been completed.

A (uppercase) This aborts the launch of the new Request Queue instance.

Single-Host Request Queue

Request Queue 20-13

The -w command sets a parameter of 30, indicating that the new Request Queue
process will wait 30 seconds for the previous Request Queue and all of its
children to terminate. The Request Queue process returns when the polling RQ
terminates or when 30 seconds have elapsed.

The OFSA_REQUEST_QUEUE Table
The OFSA_REQUEST_QUEUE table contains information identifying the
process(es) to be run on the server. This table is located in the OFSA database.
Column names and descriptions for OFSA_REQUEST_QUEUE are provided in the
following table.

Caution: The new Request Queue waits indefinitely for the
previous Request Queue and its children to terminate if no
parameter is supplied for the -w command.

Column Name Description

Job_Num The unique job identification number. This number is used to
identify the row for updates and queries.

Login_Name The user name of the individual requesting a server-based
processing run or application execution.

Status The status of the UNIX process after completion.

Process_ID The process ID for the application - assigned by the UNIX
operating system.

Return_Code The exit or return code of the UNIX process.

Priority Currently not used.

Application An application identification number used for application-level
security.

Service_Request A label identifying the exact request. This label is used to look
up the location and name of the application to be launched.

The path associated with each label is defined in the ofs.ini file.

Request_Date The timestamp the job was submitted.

Schedule_Date Currently not used.

App_Arguments An encrypted field containing the arguments that are passed to
the application.

Host_Name If you are running multi-host Request Queue a non-default
value appears in this column.

Single-Host Request Queue

20-14 Oracle Financial Services Installation and Configuration Guide

Server Application Arguments
Any server-side application can receive its program arguments from either Request
Queue or from prompts that are displayed if the application is attached to a tty. Any
application executed by Request Queue will be a background process and will not
be attached to a tty.

This section discusses the method for starting an OFSA server application when it is
attached to a tty. However, the order of arguments are the same whether or not the
process is executed by Request Queue.

Each application requires both common and application-specific arguments. The
common arguments identify the database to which the application attaches and the
user account to be used. The application-specific arguments add additional
information needed to run each of the applications.

The following environment variables need to be set before the common and
application-specific arguments can be set.

■ OFSA_INSTALL is the OFSA installation directory

■ INIPATH is OFSA_INSTALL/etc

End_Date The timestamp the job ends.

End_Time The time the job ends.

Language NLS Language.

Territory NLS Territory

Column Name Description

Single-Host Request Queue

Request Queue 20-15

■ SHLIB_PATH or LD_LIBRARY_PATH is OFSA_INSTALL/lib

■ OFSA_INSTALL/bin must be in the path environment

Setting the Common Arguments
The process for setting the common arguments is described, as follows.

Starting the Application

Type the appropriate command at the command prompt to start the server
application. The table lists the application and corresponding command.

Common Database Attachment Method

Every server-side application has to be attached to the database. In order to
complete the attachment you need to provide the following:

■ A job number

■ The database the application attaches to

■ The name of the user logging on to the database

■ The user ’s password

Following are the prompts to complete the attachment.

Note: In this chapter, OFSA_INSTALL is the convention used to
indicate where the OFSA software is installed in your directory
structure.

Oracle Application Command

Balance & Control ofsbc

Performance Analyzer ofspa

Risk Manager ofsrm

Transfer Pricing ofstp

Transformation Engine ofste

Single-Host Request Queue

20-16 Oracle Financial Services Installation and Configuration Guide

Completing the Job Number Prompt

1. At the Job Number: prompt type a number that does not conflict with
current jobs (this should be a large number) and press Enter.

The job number is used by Request Queue to track and update individual jobs.
Because the application is being executed manually, the value of this parameter
does not matter.

Completing the Database Prompt

1. Look up the database alias for the target database in the ofs.ini file. This file is
located in the OFSA_INSTALL/etc directory on the server.

2. At the Database: prompt type the database alias and press Enter.

Completing the User and Password Prompts

1. At the User: prompt type in your user name for the target database and press
Enter.

2. At the Password: prompt type in your password and press Enter. The typed
characters do not appear in the window.

Setting the Application-specific Arguments
Application-specific arguments for Balance & Control, Transfer Pricing,
Performance Analyzer, and Risk Manager are described as follows.

When entering names you can specify a group name in the following format [ID
NAME].[FOLDER NAME]. If a group name is not used, the <ALL> group is
assumed.

Note: When specifying the Job Number, use the OFSA_
REQUEST_QUEUE_SEQ to obtain the next value so that you do not
overwrite any information in the Request Queue and Result Queue
tables for existing jobs. To ensure that you obtain a valid Job
Number that was not used by a previous job, execute the following
SQL:

select OFSA_REQUEST_QUEUE_SEQ.nextval from dual;

Single-Host Request Queue

Request Queue 20-17

Balance & Control
The server-side of this application requires two additional items of information
before it can be run:

■ The System ID number or name of the Processing ID

■ The Configuration ID or name associated with the Processing ID

Completing the Process ID Number Prompt

1. At the Process ID: prompt type in the System ID number or name for the
selected Processing ID and press Enter.

Completing the Configuration ID Prompt

1. At the Configuration ID: prompt type in the System ID number or name
associated with the Configuration ID and press Enter.

Performance Analyzer
The server-side of this application requires four additional items of information
before it can be run.

■ The System ID number or name of the selected Processing ID

■ The ID type (type of process to run)

■ A specified as-of-date

■ A designation for the preview flag

Completing the Allocation ID Prompt

1. At the Allocation ID: prompt type in the System ID number or name for
the selected Processing ID and press Enter.

Completing the ID Type Prompt

1. Type 0 [zero] and press Enter. No other option is available.

Completing the As-Of-Date Prompt

1. Determine the as-of-date you want to use for the Processing ID. The date format
is mm/dd/yyyy.

2. At the As of date: prompt type in the desired date and press Enter.

Single-Host Request Queue

20-18 Oracle Financial Services Installation and Configuration Guide

Completing the Preview Flag Prompt

Decide whether or not you want to preview the results before actually running the
process and writing data back to the table.

1. Set the preview flag to 1 to preview without changing data. Set the preview
flag to 0 [zero] to change data without previewing.

2. At the Preview flag: prompt type the appropriate selection and press
Enter.

Transfer Pricing
The server-side of this application requires the following two additional items of
information before it can be run:

■ The System ID number or name for the selected Processing ID

■ System ID number for the associated Configuration ID

Completing the ProcSysID Prompt

1. At the ProcSysID: prompt type in the System ID number or name for the
selected Processing ID and press Enter.

Completing the ConfigSysID Prompt

1. At the ConfigSysID: prompt type in the System ID number or name
associated with the Configuration ID and press Enter.

Risk Manager
The server-side of this application requires the following two additional items of
information before it can be run:

■ The System ID number or name for the selected Processing ID

■ The System ID number or name for the associated Configuration ID

Completing the ProcSysID Prompt

1. At the ProcSysID: prompt type in the System ID number or name for the
selected Processing ID and press Enter.

Completing the ConfigSysID Prompt

1. At the ConfigSysID: prompt type in the System ID number or name
associated with the Configuration ID and press Enter.

Single-Host Request Queue

Request Queue 20-19

Troubleshooting
The server releases of the OFS applications are designed to perform batch
processing. Because of this orientation, direct feedback from the server application
to the client is minimal. In the case of troubleshooting error messages are written to
the Request Queue log file.

To identify and correct problems within Request Queue you need to be able to
interpret log file entries, recognize error categories, understand the database
structure and functionality and be knowledgeable in three-tier client/server
architecture.

Interpreting the Log File
Two categories of entries are written to the Request Queue log file. These are:

■ Process tracking records

■ Status and error messages

The following table provides server-side return code values and corresponding
descriptions.

Return Code Value Return Code Description

1000 The ofs.ini file could not be found.

1001 The application started successfully.

1002 Request Queue was unable to fork off the child application.
Refer to the logfile for more information about why the fork
failed.

1003 The job (application’s execution) was canceled by the user.

1004 Requesting Request Queue to execute the specified application.

1005 The application completed its execution successfully.

1006 The arguments passed to the application were incorrect (bad
usage).

1007 The application was unable to attach to an additional session.

1008 The application was unable to allocate additional memory.

1009 An error message was printed by the application in the log file
or was output into one of the error tables (OFSA_MESSAGE_
LOG or OFSA_PROCESS_ERRORS).

Single-Host Request Queue

20-20 Oracle Financial Services Installation and Configuration Guide

1010 The application failed to connect to the DBMS system.

1011 The user does not have the appropriate rights to execute the
specified application.

Return Code Value Return Code Description

Single-Host Request Queue

Request Queue 20-21

Process Tracking Records
There are two sub-categories within the process tracking records categories. These
are:

■ Process startup information records

■ Process completion records

Process Startup Information Records

The following is an example of a process startup information record:

This record indicates that:

■ Each transaction logged on the tracking record received a date and time stamp.

■ The client application pinged Request Queue to see if it was listening.

■ Request Queue responded, verifying it was functional.

■ The client application issued a Balance & Control (BC) request (execute server
BC).

■ The Balance & Control request was initiated as job number 278 and UNIX
process ID (pid) number 2825.

Process Completion Records

Process completion record is the second type of tracking record. An example of this
type of record follows:

This record indicates that the operating system assigned a pid of 16694 and the
process completed its execution with a return code of 1005, indicating a successful
completion.

Sun Aug 13 08:50:37 1995: Job: 278 request PING user <username>priority 1 app
id 0 host

Sun Aug 13 08:50:37 1995: Responding to ping request

Sun Aug 13 08:50:43 1995: Job: 278 request BC user BL priority 1 app id 4 host

Sun Aug 13 08:50:43 1995: Job number 278 started with process id 2825

Tue Aug 8 20:26:39 1995: Process id 16694 completed with return code 1005

Single-Host Request Queue

20-22 Oracle Financial Services Installation and Configuration Guide

Either the job number or pid is needed to verify that a task completed properly.
Review the process startup record or query the TSER_REQUEST_QUEUE table to
locate both the job number and the pid.

Status and Error Messages
Each spawned process writes status information and error messages to the log file,
grouped in the following categories:

■ Application startup status messages

■ Message box status messages

■ Error messages

Application Startup Status Messages

An application startup status message provides OFSA release information, the
application being executed and application-specific arguments. An example of an
application startup message appears:

Oracle Balance and Control
Version 4.0
Copyright 1995-1998 Oracle Corporation
All rights reserved Worldwide
Running Balance and Control: Process ID: 105236 Config ID: 104900

This record indicates that Release 4.0 of Balance & Control is being executed and
that the Balance & Control process being run is Process ID 105236 using
Configuration ID 104900.

Message Box Status Messages

These messages provide specific, detailed information about the launched process,
including the application that generated the message. Note, however, that neither
the process job number nor pid are included in this information.

The text contained in a message box is the same whether the process is launched on
the server or on a client.

An example of a message box status message appears:

MB(/BC): SQL Stmt: select IDENTITY_CODE, ID_NUMBER, DATA_SOURCE, GL_ACCOUNT_ID,
CREDIT_STATUS_CD, REPRICE_FREQ, REPRICE_FREQ_MULTI, INTEREST_RATE_CD, DIRECT_
IND_CD, AMRT_TYPE_CD, LOAN_TYPE, TP_COA_ID, COLLATERAL_CD, TAX_EXEMPT_PCT from
CONSUMER_LOAN where (CONSUMER_LOAN.DATA_SOURCE = ‘26’)))

Single-Host Request Queue

Request Queue 20-23

Error Messages

These messages include the error, in both text and code values, the application that
generated the error and the job number. Job numbers are assigned sequentially,
beginning with 1. The numbering scheme is reinitialized when the OFSA_
REQUEST_QUEUE is flushed.

An example of an error message follows:

E(/TP[1])50 (203105) OFS Oracle drv_oci Error:
OCI Function: [0] - olon(), orlon()
Oracle Error: [1017] - ORA-01017: invalid username/password; logon denied
Driver Function: drv_oci::Connect()

This error message indicates that the application generating the message is Balance
& Control and the job number is 226.

Types of Errors Written to the Log File
Six categories of errors are written to the log file. These include:

■ Application errors

■ Asynchronous and concurrent processing errors

■ Database errors

■ Improper usage errors

■ SQL syntax errors

■ System resource errors

Each of these categories are discussed.

Application Errors

This is an application-ending error such as a core dump. If this occurs contact
Oracle Support Services.

Asynchronous or Concurrent Processing Errors

Generally, these errors are collisions or deadlocks caused by row, page or table-level
locks in a DBMS system. This problem should be referred to Oracle Support
Services.

Single-Host Request Queue

20-24 Oracle Financial Services Installation and Configuration Guide

Database Errors

Problems with database definition, data integrity or internal errors in the system
vendors or driver (OCI for example) will cause database errors. The most common
are data integrity errors. The reason for this is that the OFS applications provide
users with the ability to define many assumptions and classification methods. This
flexibility can lead to errors such as a variable overflow when retrieving a value
from the Oracle database. If the source of the database error is either a database
definition or an internal error contact Oracle Support Services.

Improper Usage Errors

The OFS applications are highly configurable, providing users with the capability of
customizing application assumptions and environment. The complexity of the
applications support this increased flexibility but can also lead to errors of this types
if the user is not sufficiently familiar with the application processes. Look for
obvious errors in the Processing ID launched by the application. If none are found
contact Oracle Support Services.

SQL Syntax Errors

These types of errors are caused either by an error within the application or the
OFSA Processing ID is corrupted or improperly defined.

An example of an improperly defined Processing ID would be a correction
Processing ID with a bad assignment rule.

If the SQL syntax error appears contact customer support.

System Resource Errors

System resource errors with respect to the OFSA server applications occur when
hardware assets are overloaded or permissions and limits for the user are
inadequate.

Interpreting Server Job Return Messages
Request Queue posts a return status message to the server status window for each
job initiated. The messages appearing are returned to the job return status column
within the server status window.

Single-Host Request Queue

Request Queue 20-25

These messages follow.

Bad Usage
The sub-process failed to start because the application parameters violated the
application’s argument passing requirements. If this message appears contact
Oracle Support Services.

Connect Failure
The server process was unable to connect to the database. Most likely the cause is
an incorrect user ID or password. This can occur if the password is changed after
starting up the application but before a server process is run. Check the log file for
more information.

Failed on Fork
A requested application could not be initiated by Request Queue as a child process.
If one of the following conditions exists a requested application cannot be executed.

■ The path to the application is either incorrect or missing.

■ Each application available for execution must be located within the .INI file
under the [OFSRQ] label.

■ The user initiating Request Queue does not have execution permission for the
requested application.

■ The maximum number of processes allowed for the user who initiated Request
Queue has been exceeded. Correct this problem by increasing the appropriate
kernel parameter for maximum processes allowed on the system.

Internal Error
An error occurred within the server application. Normally this is a database error.
Check the log file or appropriate database table (OFSA_PROCESS_ERRORS or
OFSA_MESSAGE_LOG) for additional information.

Job returned: <number>
The process died due to the signal number that is shown as a negative number (for
example, Job returned: -11). Check the log file for additional information and notify
Oracle Support Services.

Single-Host Request Queue

20-26 Oracle Financial Services Installation and Configuration Guide

Making Request
A client application submitted a request to the OFSA_REQUEST_ QUEUE table, but
the requested action has not been initiated.

No memory
The server application was unable to allocate additional memory.

None: canceled
A process has been canceled. A process can be terminated either by a user from
within the server status window (client application) or by a UNIX signal. The
signals 1, 2, or 15 (SIGHUP, SIGINTR, or SIGTERM) generates this message.

None: running
The job is running on the server.

No .ini found
Two circumstances generate this message. Either the .INI file cannot be located or
the user is unauthorized to read the .INI file.

If user authorization is not the issue check the location of the .INI file. This file is
located in the etc directory of the OFSA_INSTALL directory.

Normal
The job successfully completed.

Rights Violation
The user does not have the proper rights to run the program. This can occur if an
administrator changes an individual’s rights after a client application has been
started but before the server application is launched.

Session Failure
The application was unable to obtain a database session. Check the server log file
for additional information regarding the source of the problem.

Multi-Host Request Queue

Request Queue 20-27

Multi-Host Request Queue
This iteration of Request Queue is referred to as Dynamic Multi-Host Request
Queue (MRQ). MRQ enables client jobs to be assigned to multiple servers by
automatically distributing client jobs among the servers that are available.

MRQ operates in a master-slave mode. The master Request Queue assigns jobs to
the available hosts, while the slave (or normal) Request Queues execute the jobs
assigned to them. No user action is needed to create a master Request Queue and if
the master Request Queue is shutdown or not responding, one of the normal
Request Queues automatically promotes itself to master.

The first MRQ to be started on a database promotes itself to master. Each Request
Queue will regularly update a row in the new database table RQ_STATUS with a
timestamp to show that it is up and running. The master Request Queue uses this
table to determine which hosts are up and should be assigned jobs.

If a Request Queue is shut down gracefully it will remove its row from this table. If
a Request Queue or host crashes, its timestamp will not be updated and it will be
removed after a specified amount of time (default 60 seconds). If the master Request
Queue is shut down, the first Request Queue to notice that the master is missing
from the RQ_STATUS table promotes itself to master. If the master Request Queue
hangs or crashes, its timestamp in the table becomes old and after a specified
amount of time (HostTimeOut, default 60 seconds) another Request Queue will
notice this and become master. Table locking is used to ensure that two Request
Queues do not become master at the same time.

Client jobs are distributed in round-robin fashion among all available hosts. If there
are four new jobs and three hosts, the jobs are assigned to host1, host2, host3, and
host1, respectively. Client PCs are not assigned to a particular host. The master
Request Queue assigns jobs to a host by setting the HOST_NAME column of the
job’s entry in the OFSA_REQUEST_QUEUE table.

Installation and Configuration
This section discusses the installation and configuration of MRQ.

Note: You cannot run MRQ and Request Queue at the same time.

Note: Refer to the section entitled "Single-Host Request Queue"
for detailed information on the overall Request Queue process.

Multi-Host Request Queue

20-28 Oracle Financial Services Installation and Configuration Guide

Launching Dynamic Multi-Host Request Queue
DMRQ is not automatically activated when the Oracle Financial Services (OFS)
applications are installed on the server and client. This is a manual process,
performed by the System Administrator or DBA, using either the mrq command,
which is a UNIX shell script designed to set the required environment variables
automatically, or by launching DMRQ directly.

If you decide to launch DMRQ directly you need to set up the environment
variables manually, according to the requirements of the server vendor. You can use
the mrq script as a reference for the variables you need to address. See Chapter 6,
"UNIX Server Installation and Configuration" for detailed information on setting up
the server environment variables specific to the server on which you are installing
the OFSA server-centric software.

The database upgrade process adds the new table, RQ_STATUS, to the database. See
the section entitled "Database Changes - RQ_STATUS Table" for information on this
table.

Using the mrq Script to Set Up Dynamic Multi-Host Request Queue
Refer to the section entitled "Using the rq Script to Set Up Request Queue" for
detailed information on setting up the operational parameters of DMRQ. The
operational parameters for DMRQ are the same as for Request Queue.

Configuring Dynamic Multi-Host Request Queue
No configuration changes are necessary to make DMRQ work. However the
following parameter can be adjusted in the OFS.INI file, in the [ofsrq] section:

The MappedRQHost and DistMode parameters are no longer used and may be
deleted.

Note: Oracle recommends that the person responsible for
launching Request Queue is also responsible for maintaining the
applications.

HostTimeOut Time (seconds) before a host is declared down. Default setting
is 60 seconds.

Multi-Host Request Queue

Request Queue 20-29

The time between updates of the timestamp, and between those times, when the
master assigning jobs, is controlled by the -i option of Request Queue. This value,
the Poll Interval, has a default of 3 seconds.

The Request Queues get the name of their host from the Nodename returned by
uname -n, the name by which the system is known on a communications network.
These names should be unique.

Client Software Changes - Server Status Window
In the Server Status window, the Status column can show a new state, Host Assigned.
This means the job has been assigned to a host but has not started executing yet.
The following is a sequence of states that a job goes through at startup: Request
Execution, Host Assigned, Executing. If the master Request Queue is functioning
properly, a job should go from Request Execution to Host Assigned within a few
seconds (controlled by the Poll Interval).

Database Changes - RQ_STATUS Table
The common communication point for the Request Queues is a table in the database
called the RQ_STATUS table. There is a single row in this table for each Request
Queue that is currently running. This table has the following columns:

One of the rows in this table is designated the master Request Queue and contains
the code for MASTER in the RQ_STATUS column.

Column Name Description

HOST_NAME This column stores the name of the host of each of the Request
Queues. It is the Primary Index of the table and its values are
unique.

RQ_STATUS This column has the codes for Normal (0) or Master (1).

STATUS_DATE The date column is updated on a regular basis by each of the
Request Queues with a current date and time, as retrieved from
the database. This timestamp represents the last time the
Request Queue checked the table. The status date is in Oracle
date format, which embeds both date and time.

 The date and time are used to determine whether a Request
Queue is currently active.

Multi-Host Request Queue

20-30 Oracle Financial Services Installation and Configuration Guide

The following table shows the master and normal Request Queues in a typical RQ_
STATUS table.

Additional Multi-Host OFS.INI Parameters
The following table lists additional ofs.ini parameters for DMRQ.

Troubleshooting
This section provides information on troubleshooting problems in multi-host
Request Queue.

Host Crashes
If a Request Queue or its host hangs or crashes, there is a short period of time
(HostTimeOut) before this is recognized by the master Request Queue. During this
time jobs are still assigned to that host by the master. Those jobs will run when the
host and Request Queue are restarted. Alternatively, you can cancel the jobs and
rerun them on other hosts.

HOST_NAME STATUS STATUS_DATE

host1 Normal (0) Mar 4 1997

host2 Master (1) Mar 4 1997

host3 Normal (0) Mar 4 1997

host4 Normal (0) Mar 4 1997

Parameter Description

ServerTimeOut Time client waits (in seconds) for server to respond to pings. The
default setting is 30 seconds.

ClientPollInterval Time interval (in seconds) between client polls of Request Queue
for the Server Status window. The default setting is 1.65 seconds.

Multi-Host Request Queue

Request Queue 20-31

Master Request Queue Hangs
DMRQ is designed to recover from most combinations of hosts crashing or hanging.
There is one scenario, however, which cannot be handled by DMRQ. In this scenario
the master hangs (but does not crash) while locking the RQ_STATUS table. This
situation would give the following symptoms:

■ New jobs are not being assigned to hosts. In the client’s Server Status window
the jobs stay in the Request Execution state and the Host column is blank.

■ Some of the other Request Queues have tried to become master and then hung.
Check for the message Master XXX is old, trying to become new master at the end
of the logs.

■ Master Request Queue is still running.

■ Master Request Queue’s timestamp in RQ_STATUS is, most-likely, not being
updated.

In this circumstance you need to kill the master Request Queue manually. First try
killing it by running rq -K on the same machine. If the master Request Queue does
not acknowledge this command with RQ Termination requested, then kill it with the
kill command. If that command is unsuccessful use the kill -9 command. Use this
last command as a last resort.

Debug Option
There is a debug option for Request Queue (-d) that outputs verbose information
that will be useful to Oracle Support Services in diagnosing problems.

Multi-Host Request Queue

20-32 Oracle Financial Services Installation and Configuration Guide

FDM Utilities 21-1

21
FDM Utilities

Oracle Financial Data Manager (FDM) Utilities include scripts and procedures that
assist you in managing the FDM database environment. These utility scripts are
installed with the FDM database package on the server. This chapter describes the
purpose for these scripts and how to use them.

The following FDM Utilities are described in this chapter:

■ Add Leaf

■ Currency Mapping

■ Changing Functional Currency

■ Instrument Templates

■ Ledger Stat Load

■ Modify Balance Column Size

■ Recompiling Packages, Procedures, and Java Classes

■ Recompiling Views and Triggers

■ Instrument Synchronization

■ Codes Synchronization

■ Reporting Utilities

The default location for the FDM utility scripts is the OFSA_INSTALL/dbs/<OFSA
release>/utilities subdirectory of your OFSA installation directory.

Add Leaf

21-2 Oracle Financial Services Installation and Configuration Guide

Add Leaf
The Add Leaf procedure performs the following:

1. Adds the new Leaf Column name to all of the appropriate tables based upon
Table Classification assignments as NUMBER(14) NOT NULL

2. Updates the new Leaf Column with a default value of 0 Registers the new Leaf
Column on all affected tables as FDM Data Type = LEAF.

The ADD_LEAF procedure adds the specified column_name as NUMBER(14). It
then registers the column name on the affected table as FDM Data Type LEAF.

Use the ADD_LEAF procedure to add the new Leaf Column to all of the required
tables. However, this procedure does not affect views. You must manually drop and
re-create any views of the designated Table Classifications so that they include the
new Leaf Column.

Tables Affected by ADD_LEAF
The list of objects altered by the ADD_LEAF procedure is based upon the specified Leaf
Type and existing Table Classification assignments. Tables with the following Table
Classification assignments, where the Leaf Column does not already exist on the object, are
altered by the ADD_LEAF procedure to include for new All (Both Instrument and Ledger)
Leaf Columns:

Note: In general, set the SQL*Plus setting SERVEROUTPUT = ON
when running any FDM utilities that are invoked by executing a
stored procedure. This enables the display of all status and warning
messages.

Note: The ADD_LEAF procedure only completes the first part of
registering a new Leaf Column for the FDM database. There are additional
steps required to complete the Leaf Registration. Refer to Chapter 17,
"FDM Leaf Management"for complete instructions on registering a new
Leaf Column.

Add Leaf

FDM Utilities 21-3

Tables affected for Leaf Type = Both Instrument and Ledger

For Leaf Columns of Registration Type Ledger Only, the Leaf Column must exist on each
object registered for the following Table Classifications:

Tables affected for Leaf Type = Ledger Only:

If the Leaf Column already exists on a table, the ADD_LEAF procedure ignores that table
and does not attempt to add (or register) the new Leaf Column to it. Only objects in the
Table Classification assignments that are of OBJECT_TYPE = TABLE are altered by the
procedure.

Running the Procedure with the RUN_ADD_LEAF script
To run the ADD_LEAF procedure, go to the OFSA_INSTALL/dbs/<OFSA
release>/utilities/add_leaf directory. Then, login to SQL*Plus as the FDM Schema
Owner and type the following command:

SQL> @run_add_leaf

Table Classification CD Description

50 Ledger Stat

200 TP Cash Flow

210 TP Non-Cash Flow

300 Transaction Profitability

310 Instrument Profitability

351 Requires all B Leaves

360 RM Standard

370 TP Option Costing

Table Classification CD Description

50 Ledger Stat

352 Requires all L Leaves

Note: While Views also require the new Leaf Column, the ADD_
LEAF procedure does not affect them. Drop and recreate any
required views manually to add the new Leaf Column to them.

Add Leaf

21-4 Oracle Financial Services Installation and Configuration Guide

This script prompts you for the following parameters:

Leaf Column Name
Display Name
Leaf Type
DBF Name

These parameters are described as follows:

Leaf Column Name This is the column name of the new Leaf Column. The name is
restricted to <=30 characters.

Display Name This is the name for the column as it appears in the OFS applications.
The Display Name is restricted to <=40 characters.

Leaf Type The Leaf Column must be identified as L - Ledger Only or B - Both
Instrument and Ledger. The Leaf Type determines the object on which the new
column is added.

DBF Name This is the name of the new column for database file exports. It is
restricted to <=10 characters.

Calling the Procedure Directly
If you want to call the procedure directly, instead of using the run_add_leaf script to
prompt for the required parameters, execute the following statement as the FDM
Schema Owner:

SQL> EXECUTE ofsa_util.add_leaf(’&db_owner’, ’&leaf_column’, ’&display_
name’, ’&leaf_type’, ’&dbfName’);

Provide the parameters.

Reviewing ADD_LEAF DDL and DML statements
The ADD_LEAF procedure outputs all DDL statements to the OFSA_STP table for
TASKNAME = ADD_LEAF. It also outputs the DML statements for setting the
default value of the new Leaf Column = 0 with TASKNAME = UPDATE_LEAF.
Review the statements in this table for these TASKNAME values to verify that all
statements were processed successfully. For DDL statements (ADD_LEAF), a
STATUS = 0 indicates success, while any other number designates failure with the

Currency Mapping

FDM Utilities 21-5

STATUS value being the Oracle error. For DML statements (UPDATE_LEAF), the
STATUS indicates the number of rows updated by the procedure.

Currency Mapping
The Currency Mapping utility enables you to map values from the old
CURRENCY_CD column to the new ISO_CURRENCY_CD standard values in your
Instrument tables. Previously, the CURRENCY_CD column enabled users to report
instrument data in different currencies. However, the code values for this column
were not standardized. FDM 4.5 replaces CURRENCY_CD with ISO_CURRENCY_
CD column for multi-currency functionality. The code values for this new column
are based upon ISO standards and are seeded by the FDM database creation and
database upgrade processes.

FDM defaults the ISO_CURRENCY_CD value for all Instrument table records to the
Functional Currency specified during the database upgrade process. FDM preserves
the old CURRENCY_CD column so that you can use the Currency Mapping utility
to map instrument records to the new values. Run this procedure after the FDM 4.5
database upgrade process is complete.

Complete the following steps to run this procedure:

■ Creating the Mapping Table

■ Defining Mapping Assignments

■ Executing the Procedure

■ Review Log Information

Creating the Mapping Table
The Mapping Table defines how the old CURRENCY_CD values are mapped to the
new ISO_CURRENCY_CD values. The Currency Mapping procedure reads this
table to perform the appropriate update statements on the instrument tables.

From the OFSA_INSTALL/dbs/<OFSA release> directory login to SQL*Plus as the
FDM Schema Owner and run currencies_mapping_setup.sql to create the Mapping
table. This script takes the following input parameters:

<Password> This is the password for the database owner, to invoke
SQL*Loader.

<Upgrade home dir> This is the full path to the database upgrade home
directory as previously described. Do not enter a trailing / character.

Currency Mapping

21-6 Oracle Financial Services Installation and Configuration Guide

An example of a full path follows:

/app/ofsa/ofsa4.0-092/dbs/400001010

<Sql*Loader executable> This is the command used to execute SQL*Loader.
For most Oracle installations, this command is sqlldr.

If you run currencies_mapping_setup.sql with no command line parameters, it
prompts you for them. It then prompts you to confirm that the parameters you
entered are correct.

SQL> @utilities/convert_currencies/currencies_mapping_setup

Or:

SQL> @utilities/convert_currencies/currencies_mapping_setup <Password>
<Upgrade home dir> <Sql*Loader executable>

The currencies_mapping_setup.sql exits SQL*Plus with an error message
under the following conditions:

■ You type N at the confirmation prompt.

■ Any of the input parameters you entered are invalid.

After running the script, refer to the currencies_mapping_setup.log for error
messages. This log file is in the OFSA_INSTALL/dbs/<OFSA release>/log
directory. Ignore any Table or View does not exist errors occurring during Drop Table
statements.

Defining Mapping Assignments
The mappings of old CURRENCY_CD values to new ISO_CURRENCY_CD values
are defined in the OFSA_TEMP_CURRENCIES_MAPPING table. This table is
created by the currencies_mapping_setup script.

FDM provides a set of default mappings for this table. However, because previous
versions of OFSA did not enforce any standards for CURRENCY_CD values, it is
possible that the default mappings do not reflect your organization’s
implementation. Review the mappings in this table to verify that they are correct for
your implementation.

The structure of this table is as follows:

Column Name Description

CURRENCY_CD Identifies the old CURRENCY_CD values for
OFSA 3.5/4.0.

Currency Mapping

FDM Utilities 21-7

FDM provides the following default mappings. Modify these mappings as
appropriate for your implementation:

ISO_CURRENCY_CD Designates the new ISO_CURRENCY_CD
value for FDM 4.5.

CURRENCY_CD ISO_CURRENCY_CD

110 CAD

120 GBP

130 DEM

140 CHF

150 FRF

160 ITL

170 JPY

180 MXP

200 AUD

210 ARA

220 BHD

230 BEF

240 BRC

250 CSK

260 CLP

270 CNY

280 COP

290 DKK

300 ECS

310 FIM

320 GRD

330 HUF

Column Name Description

Currency Mapping

21-8 Oracle Financial Services Installation and Configuration Guide

340 HKD

350 INR

360 IDR

370 IEP

380 ILS

390 JOD

400 KWD

410 LBP

420 MYR

430 MTL

440 ANG

450 NZD

460 NOK

470 PKR

480 PEI

490 PHP

500 PLZ

510 PTE

520 SAR

530 SGD

550 ZAR

560 KRW

570 ESP

580 SEK

590 TWD

600 THB

610 TRL

620 AED

CURRENCY_CD ISO_CURRENCY_CD

Changing Functional Currency

FDM Utilities 21-9

Executing the Procedure
After editing the Currency Mapping table, run the procedure to update designated
Instrument tables with the new ISO_CURRENCY_CD values. To do this, login to
SQL*Plus as the FDM Schema Owner and type the following:

<SQL> execute ofsa_convert_currencies(p_table_name);

where p_table_name is the Instrument table name that is updated by the procedure.
For example:

<SQL> execute ofsa_convert_currencies(’MORTGAGES’);

In this example, the procedure updates the MORTGAGES table, setting the ISO_
CURRENCY_CD value equal to the specified value from the Currency Mapping
table based upon the old value in CURRENCY_CD.

To update all Instrument tables, type the following:

<SQL> execute ofsa_convert_currencies(’ALL’);

This statement updates all tables with the Instrument Table Classification (table_
classification_cd=20) on which both the CURRENCY_CD and ISO_CURRENCY_
CD columns exist.

Review Log Information
Review the OFSA_STP table for information regarding update failures. This utility
outputs messages to the OFSA_STP table where the TASKNAME column =
convert_currencies.

Changing Functional Currency
Functional Currency is defined as the currency of the primary economic
environment in which an entity conducts its business. Both the FDM database
upgrade and database creation processes prompt for a Functional Currency. FDM
provides a procedure named set_default_currency for changing the Functional

630 UYP

640 VEB

CURRENCY_CD ISO_CURRENCY_CD

Changing Functional Currency

21-10 Oracle Financial Services Installation and Configuration Guide

Currency after it has already been set by the FDM database upgrade or database
creation processes.

When you specify the Functional Currency during the database upgrade or creation
processes, the FUNCTIONAL_CURRENCY_CD column in OFSA_DB_INFO is
updated with the designated value. The ISO_CURRENCY_CD column in the
Instrument and LEDGER_STAT tables is also updated with the specified Functional
Currency. In addition, all Instrument tables on which the ISO_CURRENCY_CD
column exists are altered to default to the Functional Currency for any inserts in
which an ISO_CURRENCY_CD value is not specified.

Changing the Functional Currency for an FDM database therefore involves the
following:

■ Updating OFSA_DB_INFO

■ Updating Instrument and LEDGER_STAT tables

■ Running the SET_DEFAULT_CURRENCY procedure

Each of these steps is described as follows:

Updating OFSA_DB_INFO
The OFS applications access the OFSA_DB_INFO table to determine the Functional
Currency for a database. To change the Functional Currency, execute the following
SQL statement as the FDM Schema Owner:

update ofsa_db_info
set functional_currency_cd = :new_currency;

Updating Instrument and LEDGER_STAT Tables
If you are changing the Functional Currency for your database, you may need to
update data in your Instrument and LEDGER_STAT tables. Review all Client Data
Objects with the ISO_CURRENCY_CD column and update as appropriate.

Running SET_DEFAULT_CURRENCY
The SET_DEFAULT_CURRENCY procedure alters all Instrument tables and
LEDGER_STAT so that they default to the new Functional Currency for any insert
statements where ISO_CURRENCY_CD is not explicitly specified. This involves
creating a default clause on these tables. To change the Functional Currency, execute
the following SQL statement as the FDM Schema Owner:

execute ofsa_dba.set_default_currency(USER_NAME);

Instrument Templates

FDM Utilities 21-11

For example:

execute ofsa_dba.set_default_currency(’SCHEMA_OWNER’);
This procedure sets the default for ISO_CURRENCY_CD for all Instrument and
LEDGER_STAT tables with the value specified in the FUNCTIONAL_CURRENCY_
CD column in OFSA_DB_INFO.

Instrument Templates
FDM provides template scripts to facilitate creating and altering Instrument tables.
These templates incorporate standard definitions for FDM Reserved columns to
make it easier for you to create tables with all of the columns required by FDM
Table Classifications.

The Template scripts are commented with instructions on how to remove FDM
Reserved columns and where to add user-defined columns to the script. Because all
Client Data tables are customizable, the templates are setup to make it easy for you
to add and remove columns as desired.

The Instrument Template scripts are located in the OFSA_INSTALL/dbs/<OFSA
release>/utilities/instrument_templates directory. Refer to the comments included
in each template script for information on modifying these scripts for your use.

FDM provides the following template scripts:

Script Name Description

add_inst.sql Template for adding FDM Reserved columns
required by Table Classifications to a table.

add_optional_profit.sql Template for adding optional profitability
columns to a table. These columns are not
required by any Table Classifications, but are
optional fields for profitability processing.

add_portfolio.sql Template for adding fields for the standard
Portfolio Table Classification to a table.
Because the Portfolio classification is
customizable, you need to add/remove columns
from this template as appropriate.

Ledger Stat Load

21-12 Oracle Financial Services Installation and Configuration Guide

Ledger Stat Load
The Ledger_Stat load utility is an Oracle stored procedure used to load your ledger
data into the Oracle Financial Services Applications (OFSA) LEDGER_STAT table.

The following topics are included in this section:

■ Features of the load procedure

■ Overview of the load procedure

■ Setup for the load utility

■ Running the procedure

cr_foward_contracts Template for creating the new FORWARD_
CONTRACTS table. This table is included as
part of the FDM data model for a new
installation (database creation process) but is
not automatically added to a database upgraded
from OFSA 3.5/4.0.

cr_inst.sql Template for creating a generic Instrument table
for OFS processing operations.

cr_interest_rate_options Template for creating the new INTEREST_
RATE_OPTIONS table. This table is included
as part of the FDM data model for a new
installation (database creation process) but is
not automatically added to a database upgraded
from OFSA 3.5/4.0.

cr_interest_rate_swaps Template for creating the new INTEREST_
RATE_SWAPS table. This table is included as
part of the FDM data model for a new
installation (database creation process) but is
not automatically added to a database upgraded
from OFSA 3.5/4.0.

cr_term_deposits Template for creating the new TERM_
DEPOSITS table. This table is included as part
of the FDM data model for a new installation
(database creation process) but is not
automatically added to a database upgraded
from OFSA 3.5/4.0.

cr_trans.sql Template for creating a generic Transaction
Profitability table.

Script Name Description

Ledger Stat Load

FDM Utilities 21-13

The Ledger_Stat load procedure can be invoked from either the OFSA software or
directly from the server. The process itself runs on the server.

Features
The Ledger_Stat load utility is the only supported method for loading your ledger
data into the LEDGER_STAT table. It is compatible with the Import Ledger feature
previously available in Performance Analyzer, with the following differences:

■ The Ledger_Stat load utility loads data from an Oracle table, rather than from a
.dbf file. You use SQL*Loader to load your ASCII ledger data into one or more
load tables.

■ The Ledger_Stat load utility runs on the server rather than the client, and uses a
bulk SQL approach rather than a row-by-row approach. It is therefore
significantly faster than the Import Ledger feature of Performance Analyzer,
and is recommended for large Ledger_Stat loads.

■ New leaf values are not added to the Leaf Setup tables or the Tree Rollups by
the Ledger Stat load utility. This is done separately by the Synchronize
Instrument Utility. See Executing the SYNCHRONIZE_INSTRUMENT
Procedure for more details on this topic.

The Ledger_Stat load utility offers the following features:

■ In addition to loading one month or all months, you can specify a range of
month columns to be loaded.

■ A month can be undone individually, using the Undo feature in Performance
Analyzer. You can do this even though the month to be undone was included in
a multiple-month load.

■ You can update columns in existing Ledger_Stat rows using either the additive
or replacement functionality.

■ You can bypass the upsert logic and insert all the rows from the load table using
the INSERT_ONLY mode. This functionality can be used either for first-time
loads or to reload for all months with each load.

■ You can run the load procedure as a batch load of multiple load tables, either
sequentially or in multiple, concurrent processes.

Note: The client-side Ledger Load is not longer supported for
FDM version 4.5.

Ledger Stat Load

21-14 Oracle Financial Services Installation and Configuration Guide

Overview of the Load Process
The following diagram illustrates the process flow for the Ledger_
Stat load procedure.

In the load procedure ASCII ledger data is loaded into an Oracle
table (resembling the ASCII file) using SQL*Loader. Script
templates are provided to create the load table(s).

Runtime parameters, such as the name of the load table, which
columns to load, ADD or REPLACE update functionality, and
whether or not to create offset records can be entered into the
Ledger Stat Load Batch table using a Data Verification ID. One
row per table to be loaded is entered in this table, as a way to
batch a multiple-table load in one run of the procedure.

The procedure is implemented as an Oracle PL/SQL stored
procedure so it can be invoked from a SQL ID or from SQL*Plus.
Input parameters are read from the batch/parameter table and
validated for correctness, completeness and consistency before the
load begins. Parameter errors are written to a Message column in
the batch/parameter table. Runtime statistics are written to the
batch/parameter record following completion of the load for that
record.

Limitations
The following limitations should be kept in mind.

Ledger
Extract

Program

Mainframe

ASCII
Ledger

Data

OFSA Database Server (UNIX)

Ledger
Stat

Load
 Table

FTP

OFSA/D8

ORACLE

ASCII
Ledger

Data

Ledger
Stat Load
(Oracle
Stored

Procedure)

SQL Loader

Ledger
Stat Load
(Oracle
Stored

Procedure)

SQL*Loader

Ledger Stat Load

FDM Utilities 21-15

Load Table Rows Must Be Unique
A restriction imposed by the use of bulk SQL (as opposed to row-by-row)
processing is that all the rows in the load table(s) must be unique. This means that
there is one row in the load table for one row in Ledger_Stat. A unique index is
created on each load table to enforce this uniqueness and provide acceptable
performance.

Defining Financial Elements in Leaf Setup
Occasionally, your load table may contain leaf values for one or more leaf columns
that are not defined in Leaf Setup. The Ledger_Stat load procedure loads these rows
anyway, except for the rows containing undefined or incompletely defined
FINANCIAL_ELEM_ID values.

Any new values for FINANCIAL_ELEM_ID must first be defined in Leaf Setup
before running the load. Specifically, the load procedure needs the AGGREGATE_
METHOD value for each FINANCIAL_ELEM_ID value so that the YTD columns in
Ledger_Stat can be computed using the appropriate method.

Setup for the Ledger_Stat Load Utility
The following table describes the installation components of the Ledger_Stat load
procedure.

These files are located in the OFSA_INSTALL/dbs/<OFSA release>/utilities/ls_load
directory. In this chapter, OFSA_INSTALL is the convention used to indicate where
the OFSA software is installed in your directory structure. Copy the these files to a
work area and edit the copies.

The following installation steps are addressed in this section:

File Description

lsview.sql Creates a view on Ledger_Stat. This view is required by the load
procedure. Run this script once.

lsldtbl.sql Creates a load table, as well as an index and two views on that
table. Run once for each load table you want to create.

lsload.ctl A sample SQL*Loader control file for loading the ASCII ledger
data into the load table.

Ledger Stat Load

21-16 Oracle Financial Services Installation and Configuration Guide

■ Customizing lsview.sql to add any user-defined leaf columns that have been
created in Ledger_Stat.

■ Customizing lsldtbl.sql and lsload.ctl to add any user-defined leaf columns,
and to add the m1-m12 monthly amount columns to the definition of the load
table if you plan to load more than one month at a time.

■ Running lsview.sql from SQL*Plus to create a view on Ledger_Stat.

■ Running lsldtbl.sql in SQL*Plus once for each load table that you want to
create.

Each of the steps involved in setting up and running the Ledger_Stat load
procedure are discussed in detail in the following subsections. The setup activities
need to be done only once.

In the examples that follow, Ledger_Stat has a user-defined, primary key leaf called
tp_coa_id and a non-key leaf called branch_org_id. Also, 12 monthly amount
columns are used.

Customizing lsview.sql
This script creates a view on the LEDGER_STAT table called LSL. The purpose of
this view is to provide shorter column names for the load procedure. The LSL view
must contain the same columns as Ledger_Stat.

For any user-defined leaves in your Ledger_Stat you must complete the following
steps.

1. In FDM Administration, look up the DBF_NAME for that leaf column in the
Object Columns tab.

2. In the lsview.sql file, Go to the comment line “-- Other leaf columns:” (near the
end of the CREATE or REPLACE VIEW statement) and add a line for each
user-defined leaf in your LEDGER_STAT table, using the DBF_NAME for that
leaf.

Be sure that the commas are accurate. Every line requires a comma except the
line immediately before the FROM clause.

Ledger Stat Load

FDM Utilities 21-17

An example of a customized lsview.sql file follows:

Customizing lsldtbl.sql
This script, when run, prompts you for the name of a load table to be created. It
then creates an Oracle table by the name you specified, as well as a unique index on
the table and two views, which are used by the load procedure. Complete the
following steps to perform this procedure.

1. Go to the CREATE TABLE statement. This statement creates a load table similar
in structure to the .DBF load table used with the System Administration Import
Ledger feature.

The m1-m12 columns are optional. If you plan to use the load procedure to load
more than one column at a time, then uncomment these lines (space over the
“--”). The one_month_amt column corresponds to the cur_book_b column in
the .DBF load table.

2. Go to the comment line”-- Other leaf columns:.” After this line, add a line for
each user-defined leaf in your LEDGER_STAT table.

3. Edit the INITIAL and NEXT storage parameters if you expect to load smaller
(under 2 MB) or larger (over 50 MB) amounts of data.

The current settings of 2 MB INITIAL and 2 MB NEXT are adequate (but not
optimal) for loading nearly 1 gigabyte (GB) of data. Consult with your DBA
regarding the appropriate storage parameter settings.

An example of a customized CREATE TABLE statement follows.

Note that tp_coa_id is NOT NULL because it is part of the primary key, as are all
key leaves.

. . .

m10NUMBER(15,4),
m11NUMBER(15,4),

ytd_10
ytd_11
ytd_12

AS y10,
AS y11,
AS y12,

-
-

 Other leaf columns:
[Real name in L/S] AS [DBF_NAME from OFSA_TAB_COLUMNS]

tp_coa_id
branch_org_id AS branch_id

FROM ledger_stat;

Ledger Stat Load

21-18 Oracle Financial Services Installation and Configuration Guide

m12NUMBER(15,4),
--

one_month_amtNUMBER(15,4),
--
-- ---
-- Other leaf columns (DBF_NAMEs from OFSA_TAB_COLUMNS for LEDGER_STAT):
-- ---

tp_coa_idNUMBER(14) NOT NULL,
branch_idNUMBER(14)

--
)
-- Fill in your own INITIAL and NEXT parameters with appropriate values.
-- Keep PCTFREE as 0 for best performance.
--
STORAGE (INITIAL 100M NEXT 10M MINEXTENTS 1 MAXEXTENTS 505 PCTINCREASE 0)
PCTFREE 0 TABLESPACE DATA_TS;

4. Go to the CREATE UNIQUE INDEX statement in lsldtbl.sql. This statement
creates the unique index that is required for the load table. The unique key of
the load table must be identical to the unique key of Ledger_Stat, with the
exception that instead of IDENTITY_CODE, which is in Ledger_Stat, the load
table has a column called DS (Data Source).

a. Query the Oracle RDBMS ALL_INDEXES and ALL_IND_COLUMNS
catalogs to determine the columns that compose the unique index for the
LEDGER_STAT table.

b. Determine the DBF_NAME for each column in the unique index. You can
determine this by query the FDM Objects - Object Columns tab in FDM
Administration. Alternatively, query OFSA_TAB_COLUMNS_V for table_
name=LEDGER_STAT.

c. Enter the DBF_NAMEs for these columns between the parentheses in the
CREATE UNIQUE INDEX statement. You need to add the primary-key,
user-defined leaf columns to the columns already in the list.

5. Edit the INITIAL and NEXT storage parameters if you expect to load smaller
(under 2 MB) or larger (over 50 MB) amounts of data.

An example of a customized CREATE UNIQUE INDEX statement follows.
BRANCH_ID is not part of the index because it is a non-key leaf.

CREATE UNIQUE INDEX <name
ON <name (ds,

Ledger Stat Load

FDM Utilities 21-19

year_s,
accum_type,
consolidat,
isocrncycd,
financ_id,
org_id,
gl_acct_id,
cmn_coa_id,

-- --
-- Include all additional LEDGER_STAT primary key
-- leaf columns here (use DBF_NAME from OFSA_TAB_COLUMNS_V):
-- --

tp_coa_id
--

)
-- --
-- Fill in your own INITIAL and NEXT parameters with appropriate values.
-- Keep PCTFREE as 0 for best performance.
-- --
STORAGE (INITIAL 20M NEXT 5M MINEXTENTS 1 MAXEXTENTS 505 PCTINCREASE 0)
PCTFREE 0 TABLESPACE INDEX_TS;

6. Go to the first CREATE or REPLACE VIEW statement in lsldtbl.sql. This
statement creates a view on the newly-created load table. The purpose of this
statement is to translate null amounts to 0, and to ignore rows where all amount
columns are null or 0.

If you plan to load more than one month at a time, then uncomment (space over
the “--”) all the rows that reference columns m1-m12.

7. Go to the “-- Other leaf columns (DBF_NAME from OFSA_TAB_COLUMNS_
V):” comment line and add a line for each user-defined leaf in your Ledger_Stat.
Remember to use the DBF_NAME for each leaf.

An example of a customized CREATE or REPLACE VIEW statement follows.

. . .

NVL(m10,0) AS m10,
NVL(m11,0) AS m11,
NVL(m12,0) AS m12,

--
NVL(one_month_amt,0) AS one,

--
-- ---
-- Other leaf columns (DBF_NAME from OFSA_TAB_COLUMNS_V for LEDGER_STAT):
-- ---

Ledger Stat Load

21-20 Oracle Financial Services Installation and Configuration Guide

tp_coa_id,
branch_id

--
FROM <name
WHERE NVL(one_month_amt,0) <> 0;
--
--OR NVL(m1,0) <> 0
--OR NVL(m2,0) <> 0
--OR NVL(m3,0) <> 0
. . .

;

8. Go to the second CREATE or REPLACE VIEW statement in lsldtbl.sql. This
statement creates a second view on the newly-created load table to be used in
creating offset records. This statement joins to OFSA_DETAIL_LEAVES to get
the Offset Common COA and the Offset Org associated with the Common COA
value in each row. This statement then returns these values in place of the
Common and Org values from the input row from the load table. It ignores
rows for which no offset is defined in OFSA_DETAIL_LEAVES.

For each row returned by the view, it multiplies all the amount columns by -1.

If you plan to load more than one month at a time, uncomment all of the lines
that reference m1- m12.

9. Go to the line “-- Other leaf columns (DBF_NAME from OFSA_TAB_
COLUMNS_V):” and add a line for each user-defined leaf. Remember to use the
DBF_NAME for each leaf.

An example of this second CREATE or REPLACE VIEW statement follows.

Because branch id is a non-key leaf, it is not included in the GROUP BY. This
requires a group function, such as MIN or MAX, to be used on that column in the
SELECT list.

SUM(m10)*-1 AS m10,
SUM(m11)*-1 AS m11,
SUM(m12)*-1 AS m12,

--
SUM(one)*-1 AS one,

--
-- --
-- Other leaf columns (DBF_NAME from OFSA_TAB_COLUMNS_V):
-- (Use the MIN() function on non-key leaves,
-- to avoid including them in the GROUP BY)
-- --

tp_coa_id,

Ledger Stat Load

FDM Utilities 21-21

MIN(branch_id)
--
FROM <name._v lt, detail_leaves dl
WHERE dl.leaf_node = lt.cmn_coa_id
AND dl.o_coa_id NOT IN (-99100,0)
GROUP BY ds,

year_s,
accum_type,
consolidat,
isocrncycd,
financ_id,
dl.o_org_id,
gl_acct_id,
dl.o_coa_id,
-- --
-- Include all Primary Key leaf columns
-- (using DBF_NAME from OFSA_TAB_COLUMNS_V) in the GROUP BY clause
-- --
tp_coa_id
;

Customizing lsload.ctl
Make a copy of this file for each load table that you want to load, then follow these
steps to customize the file.

1. Enter the full path name and file name of the ASCII ledger data file from which
you want to load.

2. Enter the name of the load table to which you want to load.

3. Update the column position definitions to match the column positions in your
ASCII load file.

4. Add a line for each user-defined leaf column. Remember to use the DBF_
NAME, as in the load table created by lsldtbl.sql.

5. Add lines for columns m1-m12 if you plan to load more than one column at a
time.

Note: The m1-m12 columns in the load table correspond directly
to the MONTH_01 - MONTH_12 columns in Ledger_Stat. For
example, if MONTH_01 in your fiscal period corresponds to March,
then the m1 column in the load table must contain data from March
because it will be loaded directly into MONTH_01 in Ledger_Stat.

Ledger Stat Load

21-22 Oracle Financial Services Installation and Configuration Guide

Be sure to retain the “truncate into” clause. This automatically deletes all rows that
populated the load table from the previous load.

Running lsview.sql
To create the lsview on Ledger_Stat you need to run the lsview.sql script. Run the
script by following these steps:

1. On the server, log into SQL*Plus using the database owner user id. You need
the encrypted password.

2. At the SQL> prompt type the following:

SQL> @lsview.sql

You only need to run this script once. However, if you need to change the script
you can run it again.

Running lsldtbl.sql For Each Load Table
Run lsldtbl.sql for each of the load tables you plan to use in loading Ledger_Stat.
As the script runs, it prompts you for a table name, which you need to enter. The
script then creates the table, a unique index and two views.

To run the lsldtbl.sql script follow these steps:

1. On the server, log into SQL*Plus as the FDM Schema Owner.

2. At the SQL> prompt enter the following statement:

@lsldtbl.sql

3. When prompted, enter the table name and press Enter.

An example of the lsldtbl.sql script run for my_load_table follows. Run this script
for each of the load tables you plan to use.

SQL> @lsldtbl.sql
Load Table Name (20 chars or less): my_load_table
Table created.
Index created.
View created.
View created.
SQL>

If you need to change the script and run it again, using the same load table name,
the script automatically drops the table created in the previous run then recreates it,
and the views as well.

Ledger Stat Load

FDM Utilities 21-23

Running the Ledger_Stat Load Procedure
The following topics are addressed in this section.

■ Steps associated with the monthly Ledger_Stat load procedure

■ Running concurrent loads with multiple load tables

■ Undoing Ledger_Stat load updates

■ Using the Update Mode, Insert Only and Create Offsets parameters

■ Troubleshooting the load procedure

The Monthly Ledger_Stat Load Process
The following topics are addressed in this section.

■ Loading the ASCII ledger data into Oracle load table(s) using SQL*Loader

■ Editing the Ledger Stat Load Batch parameter table using the Data Verification
ID

■ Invoking the load procedure

■ Running the Synchronize Instrument utility if your load table includes new
values in any of the leaf columns.

Loading the ASCII Data
Load each ASCII ledger data file into an Oracle load table (which you created with
the lsldtbl.sql script) using SQL*Loader. For large files (on the order of 1 million+
records), the SQL*Loader Direct Path load may be faster. Refer to Oracle8i Utilities
for more information on SQL*Loader options.

Remember that the m1-m12 columns in the load table correspond directly to the
MONTH_01 - MONTH_12 columns in Ledger_Stat.

For example, if your fiscal period runs from September through August, then
MONTH_01 in Ledger_Stat contains values for September. Therefore, the m1
column in the load table also contains values for September because it is loaded
directly into MONTH_01 in Ledger_Stat.

Also, the value in the YEAR_S column for each row in the load table should contain
the same value as the corresponding row in Ledger_Stat. The YEAR_S value in
Ledger_Stat is the calendar year of the first month of the fiscal period. For a load
table row containing data from September, 1997 through August, 1998 in columns
m1 through m12, respectively, the YEAR_S value should be 1997. See the Oracle

Ledger Stat Load

21-24 Oracle Financial Services Installation and Configuration Guide

Performance Analyzer Reference Guide and Oracle Financial Data Manager
Administration for additional information about fiscal year.

NULLs (blanks in the ASCII file) do not cause problems in the ONE_MONTH_AMT
column or any of the MXX columns and, in fact, are recommended for unused
amount columns. NULL values result in more compactly stored data in the load
table and faster run times for the load procedure. NULL values are converted to
zeroes during the load to Ledger_Stat.

You can load more than one data source into a single load table, using one
SQL*Loader step or several. The Ledger_Stat load procedure can handle multiple
data sources in the same load table. The primary advantage of loading from more
than one load table is, for large Ledger_Stat loads (on the order of 500,00+ to
millions of rows), the ability to load concurrently from multiple load tables.

Multi-Currency-Related Data Issues: ISO_CURRENCY_CD
For multi-currency support, FDM 4.5 includes the ISO_CURRENCY_CD column on
the LEDGER_STAT table and as a component of its unique index. The column must
also be added to any load table used for loading LEDGER_STAT. The FDM 4.5
scripts for creating a load table and the required views on the load table include this
column. In addition, both the template SQL*Loader control file for the load table
and the script for creating the LSL view on LEDGER_STAT include the ISO_
CURRENCY_CD column. If you have upgraded from a previous version of OFSA,
rerun these scripts to recreate your load tables and required views with the new
definitions that include ISO_CURRENCY_CD.

Because ISO_CURRENCY_CD is a component of the unique index on LEDGER_
STAT, the upsert logic of the Ledger Stat Load utility requires these values to be
correct prior to attempting the load. The Ledger Stat Load procedure validates and
updates ISO_CURRENCY_CD values directly in the load table prior to loading, in
the following ways:

If multi-currency is enabled (OFSA_DB_INFO.MULTI_CURRENCY_ENABLED_
FLG = 1), then the Ledger Stat Load procedure updates the ISO_CURRENCY_CD
column in the load table as follows:

■ For rows having a currency-basis financial element value (for example,
balances, weighted rates) that contain an invalid value for ISO_CURRENCY_
CD, the ISO_CURRENCY_CD column is set to the functional currency.

■ For rows having a non-currency-basis financial element value (for example,
statistics) that are not already set to the non-currency value for ISO_
CURRENCY_CD in LEDGER_STAT (’002’), the ISO_CURRENCY_CD column is
set to ’002’.

Ledger Stat Load

FDM Utilities 21-25

If multi-currency is not enabled (OFSA_DB_INFO.MULTI_CURRENCY_
ENABLED_FLG = 0), the Ledger Stat Load procedure updates ISO_CURRENCY_
CD to the functional currency for all rows where ISO_CURRENCY_CD is not
already equal to the functional currency.

Editing the Ledger_Stat Load Batch Parameter Table
Run the LS_LOAD_BATCH Data Verification ID (seeded by FDM). For each load
table you want to load from, enter a row in the spreadsheet and fill in the runtime
parameters.

Refer to the following table for a description of each of the parameters in Ledger_
Stat Load Batch. The Load Month Column, First Load Month Column, and Last
Load Month Column parameters refer to month columns rather than actual months.

The following table identifies the batch load parameters and the values,
descriptions or usage, as appropriate, for each.

Note: Only rows containing invalid or inappropriate values are
updated. Avoid slowing down your load processes by populating
the load table with correct ISO_CURRENCY_CD values before
running the Ledger Stat Load utility.

Parameter Valid Description/Values/Usage

Process Flag (Y/N) Y: Run a process for this batch record.

N: Do not run a process for this batch record.

Processing Sequence 1-99 The processing order for batch records. The most efficient
method, if you are running multiple processes, is to order
the tables from largest to smallest. The ordering numbers
do not need to be consecutive but they must be unique.

Load Table Name The name of the table to load from.

One-Month-Only (Y/N) Y: Load the month column designated by the “Load Month
Column” parameter from the ONE_MONTH_AMT
column in the load table.

N: Load from the MONTH_XX (MXX) columns in the load
table into the same-named columns in Ledger_Stat. The
“First Load Month Column” and “Last Load Month
Column” parameters must contain the month numbers
indicating the range of MONTH_XX columns to be loaded.

 Load Month Column
(01-12)

The month number (01-12) for the month column to be loaded,
when the “One-Month-Only” parameter ='Y'.

Ledger Stat Load

21-26 Oracle Financial Services Installation and Configuration Guide

First Load Month
Column (01-12)

The month number (01-12) of the first column in the range of
MONTH_XX columns to be loaded, when the
“One-Month-Only” parameter = 'N'.

Last Load Month
Column (01-12)

The month number (01-12) of the last column in the range of
MONTH_XX columns to be loaded, when the
“One-Month-Only” parameter = 'N'.

Update Mode
(ADD/REPLACE)

ADD: Adds (sums) input values to existing values in
Ledger_Stat columns when updating existing
Ledger_Stat rows.

REPLACE: Replaces existing values in Ledger_Stat columns
with new input values when updating existing
Ledger_Stat rows.

This mode prevents you from accidentally
double-loading your LEDGER_STAT table.

Note that this parameter has nothing to do with the
way Ledger_Stat rows are upserted. The only two
methods for updating Ledger_Stat are:

■ Updating the row if it already exists

■ Inserting the row if it does not exist

Insert-Only (Y/N) Y: Bypasses the UPDATE portion of the “upsert” logic
and inserts load_table rows directly into Ledger_
Stat without checking for existing matching rows.
Use this setting for faster execution when running
first-time loads.

N or blank: Updates Ledger_Stat using the standard “upsert”
logic, meaning that existing rows are updated and
new rows are inserted.

Create Offsets (Y/N) Y: Create Offset records.

N or blank: Do not create Offset records.

READ-ONLY parameters, filled in by the load procedure for your information:

Processing Start
Date/Time

Filled in by the procedure with the start date/time of the current
run.

Processing End
Date/Time

Filled in by the procedure with the completion date/time of the
current run.

Number of Rows Loaded Filled in by the procedure with the number of Ledger_Stat rows
updated or inserted.

Parameter Valid Description/Values/Usage

Ledger Stat Load

FDM Utilities 21-27

When you run the load procedure, the first record (the one with the lowest sequence
number) in the Ledger_Stat Load Batch table that has a Processing Flag = Y is read;
the Processing Flag is immediately set to N. The procedure checks the parameters in
this row for correctness, completeness and consistency and then proceed to load
Ledger_Stat from the specified load table. Once the load from this table is complete,
the procedure reads the next row in sequence with a Processing Flag = Y. It
continues in this loop until all batch/parameter records have been processed.

Invoking the Load Procedure
The are two possibilities for invoking the Load Procedure:

■ running the seeded SQL ID RUN_LEDGER_LOAD from within Oracle Balance
& Control

■ running the procedure directly from SQL*Plus

To run from SQL*Plus enter the following command at the SQL> prompt:

SQL> execute ofsa_util.ledger_stat_load;

To run from Balance & Control, open the SQL ID RUN_LEDGER_LOAD from the
OFSA ID Folder. Once the ID is open, click on the Run icon.

The best way to invoke the procedure is from a telnet SQL*Plus session so that
client PC resources are not required. Invoking the procedure from Balance &
Control or a client SQL*Plus session requires client PC resources (even though the
procedure actually executes on the server).

Running the Synchronize Instrument Utility
If your load table includes new values for any of the leaf columns (values that have
not been defined in Leaf Setup) run OFSA_UTIL.SYNCHRONIZE_INSTRUMENT.
This utility posts default values in Leaf Setup for these new leaf values and adds the
new leaf values to the orphan node of each Tree Rollup ID using that leaf column.

The leaves created in this way show No description in the description column in Leaf
Setup. Go into Leaf Setup and complete the entries for these new values. See

Message Filled in by the procedure as “Successfully Completed” after a
successful run, or with an error message in the event that the
procedure detects an error in the batch record or traps a run-time
error and terminates processing.

Parameter Valid Description/Values/Usage

Ledger Stat Load

21-28 Oracle Financial Services Installation and Configuration Guide

Executing the SYNCHRONIZE_INSTRUMENT Procedure for more details on
completing this task.

New values for FINANCIAL_ELEM_ID must be defined in Leaf Setup prior to
loading or else rows containing these values are not loaded (see "Defining Financial
Elements in Leaf Setup" for additional information).

Running Concurrent Loads with Multiple Load Tables
If you have large loads from multiple data sources, you may want to invoke
multiple instances of the load procedure to concurrently load from multiple load
tables into Ledger_Stat. To do this, set up the batch/parameter table as usual, with
one row per load table.

To invoke the multiple procedures from SQL*Plus, open multiple SQL*Plus
windows, or open multiple telnet windows, with each running SQL*Plus on the
server. Invoking multiple procedures using the SQL ID requires multiple Balance &
Control sessions.

Using either process, the first instance you invoke picks up the first row in the
Ledger_Stat Load Batch table and begin loading Ledger_Stat from the load table
specified in that batch/parameter record. The next procedure you invoke gets the
next batch/parameter row, and so on. You could submit one procedure instance for
each row in your batch/parameter table or you could have six rows representing six
load tables, and invoke two procedures that would alternate in getting a row,
processing it, getting another row, processing it and so forth, until all rows had been
processed.

To maximize parallelization, order the batch/parameter rows from the largest load
to smallest.

Undoing Ledger_Stat Load Updates
You can undo updates to Ledger_Stat by accessing the Process/Undo menu in
Performance Analyzer. This undo procedure works, whether you have updated
Ledger_Stat through Performance Analyzer or through the server-based Ledger_
Stat load procedure.

Invoking the undo function will zero-out the column in Ledger_Stat corresponding
to the month(s) that you are undoing and will zero-out the rows having IDENTITY_
CODE values corresponding to the DATA_SOURCE that you are undoing.

Note the following qualifications to the undo process:

■ If you are logged into Balance & Control from either a SQL ID or SQL*Plus
when you run the load procedure, you must log out of Balance & Control and

Ledger Stat Load

FDM Utilities 21-29

log back in, in order for the record of your recent updates to become visible in
the Process/Undo spreadsheet.

■ If you used Update_Mode = ADD to load Ledger_Stat then, when you undo the
load, you lose any values previously held in any existing rows for the months
that you undo.

Using the Update Mode Parameter
The Update Mode parameter determines the manner in which MONTH columns
are updated for existing rows in Ledger_Stat. The following two choices are
available:

■ Update Mode = ADD

■ Update Mode = REPLACE

In most cases the MONTH column(s) you are loading contains zeros so you use
Update Mode = REPLACE. This mode overwrites any existing values with the
values you are loading. This feature prevents you from inadvertently double
loading your Ledger_Stat and enables the load to be re-run, if necessary, without
having to run the undo procedure.

Occasionally you may have rows in Ledger_Stat that already contain values in the
MONTH column(s) corresponding to the month(s) you are loading. Use Update
Mode = ADD only when you want the values you are loading to be added
(summed) to the existing values in the existing Ledger_Stat rows that match the
rows in your load table.

Using the Insert Only Parameter
This parameter, when set to Y(es) enables you to opt for a faster load when the data
sources you are loading are being loaded for the first time or you are re-loading
data sources after they have been completely deleted from Ledger_Stat.

Selecting the Insert Only = Y parameter bypasses the update portion of the upsert
logic, and inserts all rows from the load table into Ledger_Stat. With this parameter
selected there is no update function. This works because in these cases there are no
existing rows in Ledger_Stat corresponding to the ones being loaded, so the update
steps are not needed. However, if there are any matching rows, the load fails.

This mode is useful for first-time loads, or for clients who want to re-load their
entire Ledger_Stat each period.

If you want to use the Insert Only = Y parameter for any load after the first-time
load, you must either truncate the LEDGER_STAT table or delete from Ledger_Stat

Ledger Stat Load

21-30 Oracle Financial Services Installation and Configuration Guide

all rows with IDENTITY_CODE values corresponding to the data source(s) you are
going to load.

When you select the Insert Only = N parameter the load procedure first updates
matching rows, then inserts new ones. This is the standard load parameter setting.

Using the Create Offsets Parameter
See Ledger_Stat load documentation in the Performance Analyzer Reference Guide for
the procedure to create offsets.

Troubleshooting the Load Procedure
If a load procedure is only partially successful and loads some but not all of the
rows from your load table, it is probably due to one of the following reasons:

■ A data source has been duplicated among multiple load tables. A single data
source value (column_name = ds in the load table) should not be present in
multiple load tables being loaded concurrently. However, each load table may
contain several distinct data source values.

■ The process flag in the Ledger Stat Load Batch table is set to N for some or all
jobs. Be aware that the process flag is reset to N after each run, even if the job is
not successful. Prior to running any jobs, verify that this flag is set to Y.

■ Some of the rows in the load table contain values for FINANCIAL_ELEM_ID
that are undefined or incompletely defined.

■ Some of the rows in the load table contain zero or null values for all of the
columns being loaded. The view created against each load table filters out such
rows. If you want to load rows containing all zeros for every month being
loaded, you need to customize the lsldtbl.sql script to remove the WHERE
clause from the <load_table_name>_V view and rerun the portion of the script
that creates this view.

In either case, if you have selected Update Mode = REPLACE, then you can rerun
the entire load after you have corrected the problem. There is no need to undo the
load.

If you selected Update Mode = ADD, then you should collect the rows that were not
loaded into a new load table and run a new load only for those rows. The reason is
that if you selected Update Mode = ADD, then you would have to undo the load
first, but this would also undo the portion of each value carried forward from
previous loads.

Modify Balance Column Size

FDM Utilities 21-31

Modify Balance Column Size
Balance columns store monetary values, such as a savings account balance, or a fee
balance. FDM permits modification the Data Length, Data Scale and Data Precision
for such columns with the modify_balance_column_size procedure.

The modify_balance_column_size procedure alters the column definitions for all
BALANCE columns in a specified category of tables registered within the FDM
Metadata (with the exception of Services tables). FDM identifies such columns by
querying from the OFSA_TAB_COLUMNS_V view where the FDM Data Type is
BALANCE (ofsa_data_type_cd = 1) and the table_name is a member of the type of
table specified in the procedure parameters. All tables that are within the
designated category are altered.

For FDM Reserved columns, FDM requires that the column definition is the same
across all tables on which the column exist. The column definitions are stored in
OFSA_COLUMN_REQUIREMENTS. The modify_balance_column_size procedure
updates the entries in OFSA_COLUMN_REQUIREMENTS to reflect any column
size modifications. This keeps the column definitions in sync with the Table
Classification requirements, so that all future registrations of objects with FDM
Reserved columns new definition. It also ensures that all Balance columns on
registered tables have the same definition.

Note: Although FDM supports increasing the Data Length, Data
Scale and Data Precision for Balance columns, this does not mean
that the OFS processing engines output results to a greater
precision. The precision for results generated by any of the OFS
processing engines is independent of column definitions.

Note: Always use the modify_balance_column_size procedure to
modify BALANCE column definitions. If you alter FDM Reserved
column definitions manually, new Table Classification assignments
fail because the column requirements in OFSA_COLUMN_
REQUIREMENTS do not match the new definitions.

FDM does not support modification of the Data Length, Data
Precision or Data Scale for non-Balance FDM Reserved columns.

Modify Balance Column Size

21-32 Oracle Financial Services Installation and Configuration Guide

Services Tables
The modify_balance_column_size procedure does not alter any BALANCE columns
on Customer Householding Services tables. This is because FDM does not support
expanded definitions for these columns on the Customer Householding Services
tables. However, FDM does support expanded definitions for BALANCE columns
not accessed by the Customer Householding processing. If you are using the
Services tables for Profitability, Risk Manager or Transfer Pricing processing, then
you must manually alter any of the columns required by these processing
operations to match the new definitions in OFSA_COLUMN_REQUIREMENTS.

Executing the Procedure
The modify_balance_column_size procedure is part of the OFSA_UTIL package. To
run the procedure, login to SQL*Plus as the FDM Schema Owner and execute the
following command:

SQL> set serveroutput on
SQL> execute ofsa_util.modify_balance_column_size(p_table_type,p_
precision,p_scale);

where:

p_table_type is the category of table to be altered. There are 3 acceptable values for
this parameter:

instrument - This category includes:

■ Tables of Table Classification Instrument (table_classification_cd = 20)
excluding Services tables

■ OFSA_LEDGER_STAT_INSTRUMENT

■ OFSA_LEDGER_STAT_RECON

ledger_stat - This category includes:

■ LEDGER_STAT

rm_template - This category includes:

■ OFSA_CONSOLIDATED_MASTER

■ OFSA_EAR_LEAF_AVG

■ OFSA_EAR_LEAF_DTL

■ OFSA_EAR_TOTAL_AVG

Recompiling Packages, Procedures, and Java Classes

FDM Utilities 21-33

■ OFSA_EAR_TOTAL_DTL

■ OFSA_IDT_CONSOLIDATED_DETAIL

■ OFSA_IDT_RESULT_DETAIL

■ OFSA_RESULT_MASTER

The CUR_WARM column on OFSA_CONSOLIDATED_MASTER or OFSA_
RESULT_MASTER is altered only when the column definition is expanded.

p_precision is the new Data Precision for the column

p_scale is the new Data Scale for the column

For example:

<SQL> execute ofsa_util.modify_balance_column_size(’instrument’,16, 2);

Or

<SQL> execute ofsa_util.modify_balance_column_size(’ledger_stat’,17, 4);

Limitations
If the Data Precision or Data Scale is decreased instead of expanded, the alter table
statements fail where the BALANCE columns contain data. In this situation some of
the alter statements may succeed while others fail. Oracle does not recommend that
you ever decrease the Data Precision or Data Scale.

Review Log Information
After the procedure is complete, review log entries in the OFSA_STP table where
TASKNAME = modify_balance_column_size. These log entries provide information
on whether or not the procedure was successful.

Recompiling Packages, Procedures, and Java Classes
The FDM database includes PL/SQL packages, procedures, and Java Classes. All of these
are loaded into the database by either the FDM database creation process or database
upgrade process. These objects are a required component of the FDM database definition.

It is possible for one or more of these objects to become INVALID. This may occur during a
database import, or because an object reference by the package, procedure or java class no
longer exists in the database. You or your users may receive Oracle errors indicating this
situation with such errors as:

Recompiling Packages, Procedures, and Java Classes

21-34 Oracle Financial Services Installation and Configuration Guide

■ ORA-04068 Existing state of packages has been discarded

■ Unable to resolve Java Class

To identify if this is the case, run the following query in SQL*Plus as the FDM Schema
Owner:

select object_name, object_type, object_status
from user_objects
where status = ’INVALID’;

Included in the utilities directory with the FDM database scripts is a script to refresh these
objects, in the event that one or more of these objects becomes invalid. The default location
for this refresh script is the OFSA_INSTALL/dbs/<OFSA release>/utilities/stp
subdirectory of your OFSA installation directory. OFSA_INSTALL is the convention
used to indicate where the OFSA software is installed in your directory structure.

Financial Data Manager Packages
The Financial Data Manager packages consist of all packages, procedures and java classes
required by the OFS applications, excluding those required exclusively by Oracle Market
Manager.

To run the script, go to this directory location and login to SQL*Plus as the FDM Schema
Owner. Then type the following:

<SQL> @fdm_packages.sql

The fdm_packages.sql script prompts for the password of the FDM Schema Owner.
This password is necessary for creating the java classes in the database.

This script creates the following log files in the OFSA_INSTALL/dbs/<OFSA
release>/log directory:

■ fdm_packages.log

■ pass_jar_status.log

■ rtm_jar.log

Review these logs for any errors.

Market Manager Packages
The Market Manager packages consist of packages and stored procedures required by
Market Manager, including some that are also required by FDM Administration.

Recompiling Views and Triggers

FDM Utilities 21-35

To run the script, go to this directory location and login to SQL*Plus as the FDM Schema
Owner. Then type the following:

<SQL> @mm_packages.sql

This script creates the following log files in the OFSA_INSTALL/dbs/<OFSA
release>/log directory:

■ mm_packages.log

Review this log for any errors.

Recompiling Views and Triggers
The FDM database includes both views and triggers. These objects are loaded into the
database by either the FDM database creation process or database upgrade process. These
objects are a required component of the FDM database definition.

It is possible for one or more of these objects to become INVALID. This may occur during a
database import, or because an object reference by the package, procedure or java class no
longer exists in the database. You or your users may receive Oracle errors indicating this
situation with such errors as:

■ ORA-04063: view has errors

■ Errors or incorrect behavior during insert, update or deleting on view objects

To identify if this is the case, run the following query in SQL*Plus as the FDM Schema
Owner:

select object_name, object_type, object_status
from all_objects
where owner = fdm_schema_owner
and status = ’INVALID’;

Included in the utilities directory with the FDM database scripts is a script to refresh these
objects, in the event that one or more of these objects becomes invalid. The default location
for this refresh script is the OFSA_INSTALL/dbs/<OFSA release>/utilities/views
subdirectory of your OFSA installation directory. OFSA_INSTALL is the convention
used to indicate where the OFSA software is installed in your directory structure.

Financial Data Manager Views
The Financial Data Manager views consist of all views required by the OFS applications,
excluding those required exclusively by Market Manager.

Instrument Synchronization

21-36 Oracle Financial Services Installation and Configuration Guide

To run the script, go to this directory location and login to SQL*Plus as the FDM Schema
Owner. Then type the following:

<SQL> spool fdm_views.log
<SQL> @fdm_views.sql

Review the log file for any errors. Because the fdm_views.sql script drops and re-creates
views, the privileges for these objects need to be regranted. After the script completes
successfully, run the FDM Grant All procedure to regrant these privileges.

Market Manager Views
The Market Manager views consists of views required by Market Manager.

To run the script, go to this directory location and login to SQL*Plus as the FDM Schema
Owner. Then type the following:

<SQL> spool mm_views.log
<SQL> @mm_views.sql

Review the log file for any errors. After the script completes successfully, run the Grant All
procedure. Because the mm_views.sql script drops and re-creates views, the privileges for
these objects need to be regranted.

Instrument Synchronization
During the period-ending load cycle, data is loaded into Client Data Objects such as
Instrument tables and the LEDGER_STAT table. During this load process, it is
possible for new, unidentified Leaf and Code values to be loaded into these tables.
The Instrument Synchronization procedure identifies these new Leaf and Code
values and inserts default description entries for them into the appropriate FDM
tables. The procedure performs both of these synchronizations simultaneously. It
also calculates statistics for the Undo function in Performance Analyzer.

FDM requires that all Leaf and Code values have a corresponding description. This
is required for any OFSA reporting operation to return the correct results. It also
ensures that Tree Rollup IDs work properly within the OFS applications.

Note: The SYNCHRONIZE_INSTRUMENT utility is a stored
procedure that is run by the administrator. It is recommended that
you include this procedure to run after the data load as a regular
part of your period-ending processing cycle.

Instrument Synchronization

FDM Utilities 21-37

The following topics are covered in this section:

■ Tables Requiring Synchronization

■ Leaf Synchronization

■ Code Synchronization

■ Performance Analyzer Undo Statistics

■ Executing the Synchronize Instrument Procedure

■ Exception Messages

Tables Requiring Synchronization
Leaf and Code value synchronization is required only for Instrument and LEDGER_
STAT tables. Instrument tables are defined as all tables with the Instrument Table
Classification (table_classification_cd = 20) on which all of the defined Leaf
Columns exist.

Leaf Synchronization
The SYNCHRONIZE_INSTRUMENT procedure synchronizes the Leaf Setup tables
and the Rollup table with Ledger_Stat and instrument tables, using default values
for leaf descriptions and other leaf information columns. You can then add the
correct data to the new leaf values in Leaf Setup.

The procedure performs the following functions:

■ Checks the specified table (Ledger_Stat or instrument) for new leaf values in
each of that table’s leaf columns and adds the new leaf values to the OFSA Leaf
Description (OFSA_LEAF_DESC) table.

■ Adds the new leaf values in the OFSA_LEAF_DESC table to the corresponding
detail leaf tables.

■ Adds the new leaf values, as orphan leaves, to the corresponding Tree Rollup
IDs (OFSA_IDT_ROLLUP).

When new leaf values are added to the leaf setup tables these leaves include No
Description in the DESCRIPTION column and contain default values in other leaf
information columns. After the SYNCHRONIZE_INSTRUMENT utility run is
completed the you should look for any new leaf values using the OFSA Leaf Setup
menu and enter the correct descriptions and other leaf information.

Codes Synchronization

21-38 Oracle Financial Services Installation and Configuration Guide

You should also look at the orphan node of each Tree Rollup ID for new leaf values
and move these new values to the appropriate branch in the rollup.

Codes Synchronization
The SYNCHRONIZE_INSTRUMENT procedure identifies code values in
Instrument and LEDGER_STAT tables for which a corresponding description does
not exist and inserts a default description into the appropriate Code Description
object. This applies only to CODE columns categorized as User Editable or User
Defined. CODE columns for which FDM reserves all of the values are not updated
by this procedure. The procedure displays a warning message for any unidentified
values in CODE columns where FDM reserves the entire range.

For each CODE column (ofsa_data_type_cd = 3) on the specified object, the
SYNCHRONIZE_INSTRUMENT procedure queries from OFSA_DESCRIPTION_
TABLES to identify the object storing the corresponding descriptions. If the
resulting object is a User Editable or User Defined Code Description object, then the
procedure inserts a default description for any code values for which a description
record does not already exist. If the resulting object is an FDM Reserved Code
Description object, then the procedure outputs a warning message indicating how
many invalid code values exist in the specified Instrument or LEDGER_STAT table.

Refer to Chapter 16, "FDM Object Management" for more information about objects
and reserved seeded data ranges.

For example, if you are synchronizing the DEPOSITS table, the procedure queries
all of the CODE columns on this table. An example of an FDM Reserved CODE
column is ACCRUAL_BASIS_CD. If the procedure finds any code values in this
column that are not present in the corresponding Code Description object (OFSA_
ACCRUAL_BASIS_DSC), it outputs an error message indicating the number of
invalid values present.

FDM Reserved Code Description objects are identified by the following SQL
statement:

select table_name from ofsa_table_class_assignment
where table_classification_cd = 197;

An example of a User Editable CODE column is SIC_CD. If the procedure finds any
code values in SIC_CD in the DEPOSITS table that do not have a description in
OFSA_SIC_DSC, it creates a default description No Description for each value. It is
then up to the users to update these descriptions as appropriate.

Codes Synchronization

FDM Utilities 21-39

User Editable Code Description objects are identified by the following SQL
statement:

select table_name from ofsa_table_class_assignment
where table_classification_cd = 198;

User Defined Code Description objects are object not created by FDM. You create
and register these objects for user-defined CODE columns. User Defined Code
Description objects are identified by the following SQL statement:

select table_name from ofsa_table_class_assignment
where table_classification_cd = 298;

Performance Analyzer Undo Statistics
The SYNCHRONIZE_INSTRUMENT procedure also calculates statistics used by
Performance Analyzer for the Undo function. It calculates the statistics
automatically during the synchronization based upon the AS_OF_DATE specified.

Executing the SYNCHRONIZE_INSTRUMENT Procedure
You can execute this procedure from either SQL*Plus or from within a PL/SQL
block. To run the procedure, login to SQL*Plus as the FDM Schema Owner. The
procedure requires 2 parameters - table name to be synchronized and the As of
Date. Identify the table name parameter by enclosing it in single quotes and
uppercase, as shown in the following two examples.

The syntax for calling the procedure is:

ofsa_util.synchronize_instrument(’TABLE_NAME’, AS_OF_DATE)

where table_name is either:

■ The name of an Instrument table

■ LEDGER_STAT

Specify the AS_OF_DATE in the appropriate date format, based upon your NLS_
DATE_FORMAT parameter for the database.

An example of running the stored procedure from SQL*Plus for the DEPOSITS table
follows:

SQL> set serveroutput on

SQL> execute ofsa_util.synchronize_instrument('DEPOSITS', ’05/31/2000’);

Codes Synchronization

21-40 Oracle Financial Services Installation and Configuration Guide

To execute the stored procedure from within a PL/SQL block or procedure see the
example that follows. Call the procedure as often as required to synchronize all of
your instrument tables. The appropriate table name and AS_OF_DATE is enclosed
in single quotes.

BEGIN
.
.
ofsa_util.synchronize_instrument('LEDGER_STAT', ’05/31/2000’);
.
.
END;

Exception Messages
The SYNCHRONIZE_INSTRUMENT procedure may cause two exceptions to
appear. The text and explanation for each of these exceptions follows. If you call the
procedure from a PL/SQL block you may want to handle them so that your
program can proceed.

Exception 1: Invalid table
The exception message reads:

ORA-20001 Invalid table name passed as a parameter.

where table_name is the name of the instrument table passed as a parameter to the
procedure.

This exception occurs when the value supplied for the table_name parameter is not
registered in the FDM Metadata.

Note: The AS_OF_DATE parameter is not required. However, if
you do not specify it, the procedure calculates Performance
Analyzer Undo statistics for all distinct AS_OF_DATE values in the
specified table. This is unnecessary and may result in the procedure
requiring substantially more time to complete. Oracle recommends
specifying the AS_OF_DATE parameter to improve performance of
the SYNCHRONIZE_INSTRUMENT procedure.

Reporting Utilities

FDM Utilities 21-41

Exception 2: Table is not an Instrument or LEDGER_STAT table
The exception message reads:

ORA-20002 Cannot process: table_name is not an OFSA Instrument or Ledger
type table having all leaf columns.

This exception occurs when the table_name parameter is not designated as an
Instrument table or LEDGER_STAT table in the FDM Metadata. The procedure
identified such tables based upon the Table Classification (Instrument or Ledger
Stat). Refer to theTables Requiring Synchronization section for more information.

Exception 3: Leaf Desc has invalid seeded FINANCIAL_ELEM_ID values
The exception message reads:

ORA-20003 Cannot process: Seeded range in LEAF_DESC has too many FINANCIAL_
ELEM_ID values.

This error occurs when user-defined leaf values are found in the OFSA_LEAF_
DESC table within the FDM Reserved seeded data range. The FDM seeded data
range for OFSA_LEAF_DESC is WHERE LEAF_NUM_ID=0 and LEAF_
NODE<10000. If more records are found in this range than the seeded count for
FDM version, the Synchronize Instrument procedure displays the error message
and terminates. Delete any user-defined Financial Element leaf values within the
FDM seeded data range in order to resolve this problem.

Exception 4: Table has invalid seeded FINANCIAL_ELEM_ID values
The exception message reads:

ORA-20004 Cannot process: table_name has new FINANCIAL_ELEM_ID values that
are within seeded range (less than 10000).

This error occurs when user-defined leaf values are found in the OFSA_LEAF_
DESC table within the FDM Reserved seeded data range. The FDM seeded data
range for OFSA_LEAF_DESC is WHERE LEAF_NUM_ID=0 and LEAF_
NODE<10000. If more records are found in this range than the seeded count for
FDM version, the Synchronize Instrument procedure displays the error message
and terminates. Delete any user-defined Financial Element leaf values within the
FDM seeded data range in order to resolve this problem.

Reporting Utilities
Reporting utilities include any scripts or control files used to facilitate reporting for
the OFSA Reporting Data Mart. Two such utilities are provided with OFSA 4.5 for

Reporting Utilities

21-42 Oracle Financial Services Installation and Configuration Guide

the purpose of special reporting functions using the OFSA FDM Business Area
standard reports. The following control files are included as Reporting Utilities with
FDM 4.5:

■ lsrecon.ctl

■ lsinstr.ctl

The purpose of this chapter is to introduce these control files and provide an
overview of the OFSA Reporting functions that use them. However, for detailed
information about how to run the OFSA Reconciliation or Ledger Stat Instrument
reports, refer to the Oracle Financial Data Manager Reporting Administration Guide.

The following topics are included in this section:

■ Overview of FDM Utilities -Reporting files

■ Instructions for customizing the lsrecon.ctl and lsinstr.ctl

Overview
The FDM Business Area contains two reports that require the use of SQL*Loader
control files. These reports are:

■ OFSA Reconciliation Report

■ OFSA Ledger Stat Instrument Report

The OFSA Reconciliation Report shows differences between instrument tables and
the LEDGER_STAT table. While this report is run from the FDM Business Area in
Discoverer, some additional data population is required if you intend to actually
reconcile the results by posting values to LEDGER_STAT. In this situation, you use
SQL*Loader to load the posted values into the OFSA_LEDGER_STAT_RECON table
with lsrecon.ctl as the control file.

The OFSA Ledger Stat Instrument Report is used to facilitate running Oracle
Transfer Pricing against LEDGER_STAT data. Because transfer pricing processing
does not run against a LEDGER_STAT table structure, the OFSA Ledger Stat
Instrument report is used to transfer LEDGER_STAT data to a table with an
appropriate table structure so that transfer pricing can occur. The lsinstr.ctl control
file is used to load results from the Ledger Stat Instrument Report into a table with
the correct structure for transfer pricing.

Reporting Utilities

FDM Utilities 21-43

Customizing the Control Files
The lsrecon.ctl and lsinstr.ctl are template SQL*Loader control files provided with
OFSA 4.5 for posting reconciliation results to the LEDGER_STAT table. These files
are located in the OFSA_INSTALL/dbs/<OFSA release>/utilities/reporting direc-
tory. OFSA_INSTALL is the convention used to indicate where the OFSA software
is installed in your directory structure. On the client side, these files are located in
the <Oracle Home>\<OFSA Release>\disco31 directory.

These files require customization in order to be used to post reconciliation results to
LEDGER_STAT. Instructions for editing these control files are included. However,
for detailed information and instructions on the OFSA Reconciliation Report and
OFSA Ledger Stat Instrument Report processes, refer to the Oracle Financial Data
Manager Reporting Administration Guide.

Make a copy of the control file that you are using (either lsrecon.ctl or lsinstr.ctl) for
editing, then follow these steps to customize the file.

1. Modify the INFILE name to include the full path name and file name of the
CSV data file from which you want to load.

2. Add a line for each user-defined leaf column in the list of columns at the bot-
tom of the file.

3. Verify that all columns designated as NOT NULL are included in the file for
loading.

4. Verify that the column order is the same between the control file and the
Discoverer table columns exported to the .CSV file.

5. Call SQL Loader and run the process. This loads data from the CSV file to the
table specified in the control file.

Reporting Utilities

21-44 Oracle Financial Services Installation and Configuration Guide

Sending Databases to Oracle Support Services 22-1

22
Sending Databases to Oracle Support

Services

This chapter provides instructions for sending copies of your Oracle Financial Data
Manager (FDM) database to Oracle Support Services for assistance.

Requirements of Oracle Support Services
In some situations, Oracle Support Services may request a copy of your FDM data-
base in order to investigate an issue. The instructions described in this chapter pro-
vide a step-by-step procedure for creating the files required by Oracle Support
Services in the appropriate format.

Note: Oracle Support Services may require that you complete
only a subset of the instructions described below for any particular
situation. The instructions provided below are a complete set that
may be required only in certain circumstances. Whenever you
provide it a database, Oracle Support Services will inform you of
the specific steps required for its investigation.

Requirements of Oracle Support Services

22-2 Oracle Financial Services Installation and Configuration Guide

Provide the following files for Oracle Support Services:

Files Comments/Instructions

A full Export of your database to tape Oracle recommends that you export all your
non-instrument tables to one tape and
spread your instrument tables to multiple
tapes.

A full Export of your database to tape Use the following parameters: FULL = Y,
ROWS = N.

An soft (electronic) copy of your init.ora file
& config.ora.file

A description of what is on each medium
and how it was put on the medium

A soft (electronic) copy of the Export Logs
and the parameters of par files used to create
the exports

A soft (electronic) copy of the control file in
text format

To obtain a copy of the control file in text
format:

1. Log in to svrmgrl.

2. Type the
following:

alter database
backup controlfile
to trace;

3. Exit svrmgrl.

4. Change directory
to the location
specified by the
init.ora parameter
user_dump_dest

Usually the latest
trace file is the text
version of the
control file.

Requirements of Oracle Support Services

Sending Databases to Oracle Support Services 22-3

A soft (electronic) copy of the logging file
produced by running the following script.

This script and support scripts are located on
MetaLink.

Perform the following steps:

1. Login to SQL*Plus
as SYSTEM.

2. Start the first
script by typing at
the SQL> prompt
and passing the
name of the
logging file as a
parameter. The
syntax is:

SQL> @get_info
filename.log

For example:
@get_info
database_info.log

3. Exit SQL*Plus.

Files Comments/Instructions

Requirements of Oracle Support Services

22-4 Oracle Financial Services Installation and Configuration Guide

Functional Currencies A-1

A
Functional Currencies

Acceptable Values
The following table lists the Functional Currency values acceptable for the FDM
database creation and database upgrade processes:

ISO Currency Code Currency Name

ADP Andorran Peseta

AED United Arab Emirates Dirham

AFA Afghanistan Afghani

ALL Albanian Lek

AMD Armenia Dram

ANG Netherlands Antillian Guilder

AOK Angolan Kwanza

ARS Argentine Peso

ATS Austrian Schilling

AUD Australian Dollar

AWG Aruban Florin

AZS Azerbaijan Manat

BBD Barbados Dollar

BDT Bangladeshi Taka

BEF Belgian Franc

A-2 Oracle Financial Services Installation and Configuration Guide

BES Belarus Rouble

BGL Bulgarian Lev

BHD Bahraini Dinar

BIF Burundi Franc

BMD Bermudian Dollar

BND Brunei Dollar

BOP Bolivian Boliviano

BRL Brazil Real

BSD Bahamian Dollar

BTN Bhutan Ngultrum

BUK Burma Kyat

BWP Botswanian Pula

BZD Belize Dollar

CAD Canadian Dollar

CHF Swiss Franc

CLF Chilean Unidades de Fomento

CLP Chilean Peso

CNY Yuan (Chinese) Renminbi

COP Colombian Peso

CPF French Pacific Island Franc

CRC Costa Rican Colon

CUP Cuban Peso

CVE Cape Verde Escudo

CYP Cyprus Pound

CZK Czech Koruna

DDM East German Mark (DDR)

DEM German Deutsche Mark

DJF Djibouti Franc

ISO Currency Code Currency Name

Functional Currencies A-3

DKK Danish Krone

DOP Dominican Peso

DZD Algerian Dinar

EEK Estonian Kroon

EGP Egyptian Pound

ESP Spanish Peseta

ESS Ecuadoran Sucre

ETB Ethiopian Birr

EUR Euro (European EMU)

FIM Finnish Markka

FJD Fiji Dollar

FKP Falkland Islands Pound

FRF French Franc

GBP British Pound

GEL Georgian Lari

GHC Ghanaian Cedi

GIP Gibraltar Pound

GMD Gambian Dalasi

GNS Guinea Franc

GRD Greek Drachma

GTQ Guatemalan Quetzal

GWP Guinea-Bissau Peso

GYD Guyanan Dollar

HKD Hong Kong Dollar

HNL Honduran Lempira

HRK Croatian Kuna

HTG Haitian Gourde

HUF Hungarian Forint

ISO Currency Code Currency Name

A-4 Oracle Financial Services Installation and Configuration Guide

IDR Indonesian Rupiah

IEP Irish Punt

INR Indian Rupee

IQD Iraqi Dinar

IRR Iranian Rial

ISK Iceland Krona

ISS Israeli Shekel

ITL Italian Lira

JMD Jamaican Dollar

JOD Jordanian Dinar

JPY Japanese Yen

KES Kenyan Schilling

KHR Kampuchean (Cambodian) Riel

KMF Comoros Franc

KPW North Korean Won

KRW (South) Korean Won

KTS Kazakhstan Tenge

KWD Kuwaiti Dinar

KYD Cayman Islands Dollar

KYS Kyrgyzstan Som

LAK Lao Kip

LBP Lebanese Pound

LKR Sri Lanka Rupee

LRD Liberian Dollar

LSM Lesotho Loti

LTT Lithuanian Lit

LUF Luxembourg Franc

LVR Latvian Lat

ISO Currency Code Currency Name

Functional Currencies A-5

LYD Libyan Dinar

MAD Moroccan Dirham

MGF Malagasy Franc

MMK Myanmar (Burma) Kyat

MNT Mongolian Tugrik

MOP Macau Pataca

MRO Mauritanian Ouguiya

MTL Maltese Lira

MUR Mauritius Rupee

MVR Maldive Rufiyaa

MVS Moldova Lei

MWK Malawi Kwacha

MXN Mexican Peso

MYR Malaysian Ringgit

MZM Mozambique Metical

NGN Nigerian Naira

NIC Nicaraguan Cordoba

NLG Dutch Guilder

NOK Norwegian Kroner

NPR Nepalese Rupee

NZD New Zealand Dollar

OMR Omani Rial

PAB Panamanian Balboa

PGK Papua New Guinea Kina

PHP Philippine Peso

PKR Pakistan Rupee

PLN Polish Zloty

PSS Peruvian New Sol

ISO Currency Code Currency Name

A-6 Oracle Financial Services Installation and Configuration Guide

PTE Portuguese Escudo

PYG Paraguay Guarani

QAR Qatari Rial

ROL Romanian Leu

RUR Russian Rouble

RWS Rwanda Franc

SAR Saudi Arabian Riyal

SBD Solomon Islands Dollar

SCR Seychelles Rupee

SDD Sudanese Pound

SEK Swedish Krona

SGD Singapore Dollar

SHP St. Helena Pound

SIT Slovenia Tolar

SKK Slovakia Koruna

SLL Sierra Leone Leone

SOS Somali Schilling

SRG Suriname Guilder

STD Sao Tome and Principe Dobra

SVC El Salvador Colon

SYP Syrian Pound

SZL Swaziland Lilangeni

THB Thai Baht

TJS Tajikistan Ruble

TMS Turkmenistan Manat

TND Tunisian Dinar

TOP Tongan Pa’anga

TPE East Timor Escudo

ISO Currency Code Currency Name

Functional Currencies A-7

TRL Turkish Lira

TTD Trinidad and Tobago Dollar

TWD Taiwan Dollar

TZS Tanzanian Schilling

UAK Ukraine Hryvna

UGS Uganda Shilling

USD US Dollar

UYP Uruguayan Peso

UZS Uzbekistan Sum

VEB Venezuelan Bolivar

VND Vietnamese Dong

VUV Vanuatu Vatu

WST Samoan Tala

XEU European Currency Unit

YDD Yemeni Dinar

YER Yemeni Rial

YUD New Yugoslavia Dinar

ZAR South African Rand

ZMK Zambian Kwacha

ZRZ Zaire Zaire

ZWD Zimbabwe Dollar

ISO Currency Code Currency Name

A-8 Oracle Financial Services Installation and Configuration Guide

Glossary-1

Glossary

A glossary is not provided with the Oracle Financial Services Installation and
Configuration Guide.

Glossary-2

Index-1

Index
A
ADD_LEAF procedure, 17-3, 17-4
adding a leaf column to required objects, 17-3
adding a new leaf column manually, 17-4
adding the Processing Key Column Property for leaf

columns
leaf columns

adding the Processing Key Column
property, 17-8

application components, 4-1
client-side component, 4-2
database component, 4-1
server-side component, 4-1

applications, installing (server-centric). See
server-centric applications

average length of dirty buffer write queue, 18-16

B
bad usage, 20-25
Budgeting & Planning, database upgrade

code databases
NT, 9-3
UNIX, 9-3

Super Administrator personal
database, 9-4 to 9-6

technology stack, installing, 9-1
Budgeting & Planning, server-side installation

configuring
timeout parameters, 8-15
virtual directories, creating, 8-13
virtual directories, installing files, 8-16

data, 8-9

databases
administering, 8-12
backing up, 8-12

FSBPTOOL and FSLANG, installing, 8-6 to 8-8
FSBPTOOL, defining as primary database, 8-11
HTML start page, editing, 8-17 to 8-21
metadata, 8-9
operating privileges (UNIX), 8-10
prerequisites, 8-2 to 8-5
recovery procedures, 8-8
structure, 8-9
subordinate administrator, configuring, 8-12
user-defined dimension, adding, 8-10

C
certifications, 3-1 to 3-4

client-side certification statement, 3-3
server-side certification statement, 3-2

client server, debug settings, 7-23
client server, INI settings

Balance & Control, 7-24
face, 7-21
faceweight, 7-22
fillcolor, 7-20
italic, 7-23
maximize, 7-20
modulus, 7-21
Performance Analyzer, 7-25
size, 7-23

client server, memory
leaf setup, 7-26
Tree IDs, 7-25

client server, multiple applications, 7-20

Index-2

client software
16-bit components, 7-4 to 7-6
32-bit components, 7-6 to 7-9

client software changes
server status window, 20-29

client software, configuring
linking workstation and database, 7-13
ODBC, 7-13
Oracle NET8, 7-11
SQL*Net, 7-11

client software, data format, 7-17
client software, installing

16-bit/32-bit installations, 7-3
Budgeting & Planning, 7-9
Discoverer Integrator, 7-9
FDM administration, 7-10
help files (HTML), 7-10
prerequisites, 7-1
technology components required, 7-3
Windows 95/98, 7-3

client software, OFS.INI file
modifying

data sources, 7-14
request queue, 7-16
save, tree rollup, 7-15

client software, troubleshooting
installations, 7-17 to 7-19

client software, upgrading, 7-16
client/server environment, 4-2
client-side

certification statement, 3-3
component, 4-2
requirements, 5-1

cluster key scan block gets/scans, 18-11
columns

making available within OFS applications, 17-2
registering as a leaf column, 17-2

completing the registration process for leaf
columns, 17-8

concepts
unit of work, 19-2

configuring client software. See client software,
configuring

configuring Discoverer. See Discoverer, installing
configuring FDM database. See FDM database,

configuring
connect failure, 20-25
consistent gets, 18-11
control files

customizing, 21-43
lsinstr.ctl file, 21-42
lsrecon.ctl file, 21-42

cooperative servicing, units of work, 19-7
create indexes after inserting table, 18-20
Create Offsets parameter

troubleshooting the load procedure, 21-30
using, 21-30

creating
Data Verification ID to edit Ledger_Stat load

batch
customizing lsldtbl.sql, 21-17
customizing lsload.ctl, 21-21
customizing lsview.sql, 21-16

mapping table for currency values, 21-5
cumulative opened cursors, 18-12
Currency Mapping table, 21-9
currency mapping utility, 21-5
currency values

default mappings, 21-7
defining mapping assignments, 21-6
mapping table for, 21-5

CURRENCY_CD column, 21-5
cursor_space_for_time = true, 10-6
customer support information, xxx
customized units of work, 19-5
customizing

lsldtbl.sql, 21-17
lsload.ctl, 21-21
lsview.sql, 21-16

customizing control files, 21-43

D
data dictionary cache statistics, 18-19
data sourcing environment, 4-2
database

component, 4-1
connectivity, 4-2
description, 4-3

database bound jobs, 19-20

Index-3

database changes
RQ_STATUS, 20-29

database connectivity
network protocol, 4-2
SQL*Net and NET8, 4-2

database upgrade, 12-1
date/time, 18-20
db_block_buffers, 10-6
db_block_lru_latches, 10-7
db_block_size, 10-7
db_file_multiblock_read_count, 10-7
debug option, 20-31
dedicated servicing, units of work, 19-8
default currency value mapping, 21-7
Defining Multiprocessing process, 19-13
diagrams

basic multiprocessing principles, 19-3
Discoverer, business areas (OFSA), importing, 13-6
Discoverer, installing

end user layer, 13-2
Discoverer, Market Manager business areas, 13-7
Discoverer, standard reports (OFSA), installing and

configuring, 13-8
Discoverer, upgrading, 13-3 to 13-5

OFSA_EULOWNER, migrating, 13-4
OFSA_SYSTEM, migrating, 13-5
reserved business area names, 13-3

disk_asynch_io, 10-8
distinct table partitions, 19-29
DWBR checkpoints, 18-11

E
engine bound jobs, 19-20
enqueue_resources, 10-8
examples of valid multiprocessing

parameters, 19-30

F
failed on fork, 20-25
FDM, 21-1
FDM Data Type

LEAF, 17-2
FDM database administration

index management, 18-20
managing partitioned tables and indexes, 18-25
rollback segment sizing and management, 18-38
table and view management, 18-25
tuning the database, 18-2

FDM database environment
managing leaf columns, 17-1

FDM database problem conditions and
solutions, 12-31

alpha values found in numeric columns, 12-56
client data in the detail_elem seeded data

range, 12-42
client data in the leaf_desc seeded data

range, 12-44
client data in the system_error_code data

range, 12-36
Client IDs in seeded ID range, 12-48, 12-49,

12-50, 12-51, 12-52, 12-53, 12-54, 12-55, 12-66
client IDs in seeded ID range, 12-33
o_ tables have been found, 12-41

FDM database upgrade, 12-1
executing the upgrade procedure, 12-21
FDM database problem conditions and

solutions, 12-31
password encryption changes, 12-30
preparing for, 12-19
pre-upgrade database check, 12-6
seeded data tables and ranges affected, 12-19

FDM database upgrade process
errors

general errors, 12-36 to 12-41
ID errors, 12-33 to 12-35
leaf errors, 12-42 to 12-47
SYSTEM_CODE_VALUES

errors, 12-56 to 12-60
SYSTEM_INFO errors, 12-61 to 12-65
user errors, 12-48 to 12-55

executing the procedure, 12-21 to 12-25
limitations

indexes on instrument tables, 12-3
LEDGER_STAT table, multiple, 12-3

password encryption, changes, 12-30
preparation, migration, 12-9 to 12-18

metadata conversion logs, 12-17
migrate_check.sql, 12-11 to 12-13

Index-4

migrate.sql, 12-13 to 12-16
procedure logs, 12-16
steps, 12-9 to 12-11

procedure, running, 12-18 to 12-30
check.sql, 12-19 to 12-21
database preparation, 12-18

required parameters
compatible, 12-4
dml_locks parameter, 12-5
job_queue_processes parameter, 12-5
max_enabled_roles parameter, 12-5
open_cursors, 12-5
shared_pool_size parameter, 12-5

requirements, migration, 12-6 to 12-9
functional currency, 12-8
Historical Rates conversion, 12-6
OFSA_TEMP_IRC_45, 12-7

running the procedure
errors, acceptable, 12-26
errors, contraint errors, 12-27
errors, fatal, 12-27
ID conversion logs, 12-29
log files, primary, 12-26
row count log file, 12-28
SQL loader logs, 12-29
table classification, validation, 12-28

seeded ranges affected, 12-4
seeded tables affected, 12-4

FDM database, configuring
directory, working, 10-15
init parameters, setting, 10-15

FDM database, creating
database scripts, modifying, 10-17
Oracle Java VM, 10-18
schema

functional currency, 10-18
install procedure, running, 10-19 to 10-22

FDM database, installing
components, related, 10-2
datafiles, 10-11
packages, 10-9
parameter files, 10-3 to 10-9
parameter files, performance, 10-5 to 10-9

cursor_space_for_time = true, 10-6
db_block_buffers, 10-6

db_block_lru_latches, 10-7
db_block_size, 10-7
disk_asynch_io, 10-8
enqueue_resources, 10-8
log_buffer, 10-7
log_checkpoint_interval, 10-7
parallel_max_servers, 10-8
parallel_min_servers, 10-9
shared_pool_min_alloc, 10-6
shared_pool_reserved_size, 10-6
shared_pool_size, 10-6
sort_area_size, 10-8

parameter files, performanceoptimizer_percent_
parallel, 10-9

parameter files, required
compatible, 10-4
dml_locks, 10-4
job_queue_processes, 10-4
max_enabled_roles, 10-5
open_cursors, 10-5

partitioning, table and index, 10-12
structure files, 10-3
tablespaces, 10-10

FDM database, upgrading
code descriptions, 11-7 to 11-13
codes

interest rates, 11-12
product type, 11-12
reserved, FDM, 11-7 to 11-10
user defined, 11-11
user editable, 11-10

collateral objects, 11-15
financial elements, 11-14
ID conversion

Allocation ID, 11-16 to 11-18
Configuration ID, 11-19
Discount Rates ID, 11-19
Forecast Balance ID, 11-19 to 11-22
Forecast Rates ID, 11-22 to 11-26
Historical Rates ID, 11-26 to 11-32
Leaf Characteristics ID, 11-32 to 11-34
Maturity Strategy ID, 11-34
Pricing Margin ID, 11-34
RM Process ID, 11-34 to 11-35
Term Structure ID, 11-36

Index-5

TP Process ID, 11-36 to 11-40
Transaction Strategy ID, 11-40 to 11-42
Transfer Pricing ID, 11-42 to 11-45

multi-currency
LEDGER_STAT table, 11-7
non-portfolio instrument table, 11-5
portfolio instrument table, 11-3

multiprocessing settings, 11-14
portfolio instrument table, described, 11-2
PROCESS_CASH_FLOWS, 11-14
reserved objects renamed, 11-2
services instrument table, described, 11-2
table classification, validation

non-portfolio instrument table, 11-5
portfolio instrument table, 11-4

file I/O statistics, 18-16
foundation

OFSA, 1-2
FSBPTOOL database, described, 8-6
FSLANG database, described, 8-6
functional currency, changing, 21-9

G
general database maintenance

temporary objects management, 16-63

H
handling exceptions when calling from a PL/SQL

block
invalid Financial_Elem_ID values

exception, 21-41
invalid seeded Financial_Elem_ID values

exception, 21-41
not an Instrument or Ledger_Stat table

exception, 21-41
Table Cannot be Found exception, 21-40

host crashes, 20-30
how to manage leaf columns, 17-1

I
identifying assignment levels for OFSA

multiprocessing, 19-15

identifying new column namesleaf columns
registration of, 17-2

index management, 18-20
considerations before disabling or dropping

constraints, 18-23
create indexes after inserting table data, 18-20
estimate index size and set storage

parameters, 18-23
manage a large index, 18-21
multiprocessing, 18-24
number of indexes per table, 18-21
OFSA-specific details, 18-24
originally supplied indexes in OFSA, 18-25
parallelize index creation, 18-22
specify index block space use, 18-21
specify the tablespace for each index, 18-22
specify transaction entry parameters, 18-21
summary, 18-25
UNRECOVERABLE indexes, 18-22
updating statistics, 18-24

indexes and dimension filters, 16-48
indexes, partitioned

merging, 18-36
INI settings. See server-centric applications, INI

settings or client software, INI settings
Insert Only parameter, using, 21-29
installing applications (server-centric). See

server-centric applications
installing Budgeting & Planning (server-side). See

Budgeting & Planning server-side installation
installing client software. See client software,

installing
installing Discoverer. See Discoverer, installing
installing FDM database. See FDM database,

installing
instrument synchronization

executing the SYNCHRONIZE_INSTRUMENT
procedure, 21-39

handling exceptions when calling from a PL/SQL
block, 21-40

invalid Financial_Elem_ID values
exception, 21-41

invalid seeded Financial_Elem_ID values
exception, 21-41

Table Cannot be Found exception, 21-40

Index-6

handling exceptions when calling from a PL/SQL
blocknot an Instrument or Ledger_Stat table
exception, 21-41

understanding the purpose and
functionality, 21-36

instrument templates, 21-11
internal error, 20-25
interpreting server job return messages

bad usage, 20-25
connect failure, 20-25
failed on fork, 20-25
internal error, 20-25
job returned <number>, 20-25
making request, 20-26
no memory, 20-26
no .ini found, 20-26
none: canceled message, 20-26
none: running message, 20-26
normal, 20-26
rights violation, 20-26
session failure, 20-26

invalid Financial_Elem_ID values exception, 21-41
ISO_CURRENCY_CD column, 21-5
ISO_CURRENCY_CD values, loading, 21-9

J
job returned <number>, 20-25

K
Key type columns

unique indexes for, 17-7

L
language compatible view, 15-1
large index, manage, 18-21
launching request queue

using the rq script to set up request queue, 20-4
leaf columns

adding manually, 17-4
adding the column to required objects, 17-3
All type, 17-2
completing the registration process, 17-8

definition of, 17-1
identified as a Portfolio column, 17-9
Key column, 17-3
Ledger Only type, 17-2
managing, 17-1
managing leaf values, 17-11
maximum number of user-defined, 17-2
non-key column, 17-3
not part of the Process Key, 17-10
not registered as FDM Data Type LEAF, 17-9
registering, 17-2, 17-3
re-registering objects, 17-6
seeded, 17-1
troubleshooting the registration process, 17-8
types of, 17-2
unique indexes for Key columns, 17-7
unregistering a leaf column, 17-10

leaf node, 17-11
leaf registration, 17-2
leaf setup and output tables, 16-44
leaf value, 17-11
Ledger_Stat load batch parameter table,

editing, 21-25
Ledger_Stat load procedure, running, 21-23
Ledger_Stat load updates, undoing, 21-28
Ledger_Stat load utility, 21-12

features of, 21-13
limitations of, 21-14
load process overview, 21-14
running the Ledger_Stat load procedure, 21-23
set up of, 21-15

Ledger_Stat load utility setup
running lsldtbl.sql for each load table, 21-22
running lsview.sql, 21-22

LEDGER_STAT transformation physical storage
computing INITIAL and NEXT storage

parameters, 16-53
recommended usage, 16-56
usage summary, 16-54

LEDGER_STAT updating, 19-22
Ledger_Stat updating for multiprocessing, 19-22
library cache statistics, 18-8
load procedure

troubleshooting, 21-30
loading new ISO_CURRENCY_CD values, 21-9

Index-7

log_buffer, 10-7
log_checkpoint_interval, 10-7
lsinstr.ctl file, 21-42
lsrecon.ctl file, 21-42

M
making request, 20-26
managing partitioned tables and indexes, 18-25
mapping currency values, 21-5
master request queue hangs, 20-31
migration from a previous release,

multiprocessing, 19-23
MLS. See multi-language support
monthly Ledger_Stat load process, 21-23

editing the Ledger_Stat load batch parameter
table, 21-25

invoking the load procedure, 21-27
loading the ASCII data, 21-23
running the Synchronize Instrument

utility, 21-27
multi-host request queue, 20-27

client software changes - server status
window, 20-29

database changes - RQ_STATUS table, 20-29
installation and configuration, 20-27

configuring dynamic multi-host request
queue, 20-28

new OFS.INI parameters, 20-30
troubleshooting, 20-30

debug option, 20-31
host crashes, 20-30
master request queue hangs, 20-31

multi-language support
language compatible views, 15-4
objects

base table, creating, 15-6
database triggers, creating, 15-7
description table mapping, 15-9
language compatible view, creating, 15-7
MLS table, creating, 15-6
table classification assignments, 15-9

objects, registering in FDM
Administration, 15-9

objects, seeded

code description tables, 15-10 to 15-15
metadata tables, 15-10

session language, 15-2
tables

base tables, 15-3
MLS tables, 15-4
OFSA_MLS table, 15-3

multi-language support, described, 15-1
multiprocessing, 19-2

LEDGER_STAT updating, 19-22
meaning of setting, 19-18
special considerations, 19-22
tuning by application, 19-19

database bound versus OFSA bound
jobs, 19-20

OFSA, 19-21
Multiprocessing Options, 19-4

units of work, 19-4
creating customized, 19-5
default definitions, 19-5

multiprocessing parameters
Multiprocessing Assignment Level, 19-11
Processing Engine level, 19-11

multiprocessing parameters, seeded, 19-10
multiprocessing principles, 19-3
multiprocessing settings, OFS applications

with, 19-2

N
network protocol, 4-2
new business leaves, 11-35
new features

ID conversion routines, 2-4
supported operating systems, 2-2

no memory, 20-26
no .ini found, 20-26
no_wait latch statistics, 18-18
none: canceled message, 20-26
none: running message, 20-26
normal, 20-26
NumProcesses setting, 19-30

Index-8

O
object management

account tables, creating, 16-35
client data objects

account, 16-35
free form, 16-41
instrument, 16-35
LEDGER_STAT table, 16-41

code descriptions, user defined
data management, 16-40
multi-language environment, 16-40
single language environment, 16-39

database environment described, 16-1
description table mapping, 16-34
instrument tables, creating, 16-35
OFSA_INDEX_STORAGE_DEFAULTS

described, 16-49
OFSA_TABLE_STORAGE_DEFAULTS

described, 16-49
packages

financial data manager, 16-66
market manager, 16-66

properties, column name table
basic instrument requirements, 16-23
cash flow edit requirements, 16-29
cash flow proc. requirements, 16-27
multi-currency requirements, 16-30
portfolio requirements, 16-23
TP basic requirements, 16-31
TP option costing requirements, 16-30

properties, column name table described, 16-22
properties, stored procedure table

validate correction key, 16-34
validate instrument key, 16-33
validate instrument leaves, 16-32
validate transaction key, 16-33

properties, stored procedure table
described, 16-32

registering tables (other schemas), 16-37
registration

column properties, 16-5
identifying objects, 16-4
table classifications, 16-6 to 16-22

Risk Manager results tables

dynamic results table, 16-43
earnings at risk, 16-43
scenario based, 16-42

seeded range reserved
FDM tables, 16-70 to 16-78
Market Manager tables, 16-78
shared tables (FDM and MM), 16-69

seeded tables (metadata), 16-69
seeded tables listed

collateral tables, 16-39
customer and account tables, 16-38
instrument tables, 16-37
services tables, 16-38
transaction tables, 16-37

seeded unreserved tables
FDM tables, 16-80
Market Manager tables, 16-81
shared tables (FDM and MM), 16-80

table classification
column requirements, 16-8 to 16-10
portfolio table, modifying, 16-18
stored procedure requirements, 16-10
user assignable, 16-6
validation check, running, 16-10
validation messages, 16-11

table classification, dynamic, 16-22
table classification, reserved, 16-20 to 16-21
table classification, user assignable

code descriptions user defined, 16-14
codes, user-defined, 16-13
data correction processing, 16-17
instrument, 16-12
instrument profitability, 16-16
MLS descriptions user defined, 16-13
portfolio, 16-12
RM standard, 16-17
TP cash flow, 16-15
TP non-cash flow, 16-15
TP option costing, 16-17
transaction profitability, 16-16
user defined, 16-17

template tables
filtering leaf columns, 16-48
indexes, user defined, 16-48
OTHER_LEAF_COLUMNS, 16-48

Index-9

temporary objects
audit tables, listed and described, 16-64
message tables, listed and described, 16-65

transformation output tables
extents, determining size for LEDGER_

STAT, 16-54 to 16-57
freespace, LEDGER_STAT, 16-52
indexes, 16-46
indexes, naming restrictions, 16-47
INITIAL storage parameters, 16-53
leaf setup, 16-44
LEDGER_STAT transformation, 16-52
NEXT storage parameters, 16-53
obsolete tables, dropping, 16-62
output tables (leaf setup), 16-44
recovering, reserved output table, 16-62
storage defaults, setting, 16-49 to 16-52
template tables, 16-45

views
financial data manager, 16-67, 16-68

views, using, 16-36
obsolete objects, 16-63
OFS applications

with multiprocessing settings, 19-2
OFSA foundation, 1-2
OFSA ID level, 19-12
OFSA jobs, database bound or engine bound, 19-20
OFSA multiprocessing, 19-21

concept, 19-2
Defining Multiprocessing process, 19-13
examples of valid parameters, 19-30
identifying assignment levels, 19-15
migration from a previous release, 19-23
Multiprocessing Options, 19-4
OFSA ID level, 19-12
OFSA jobs, 19-20
overriding the multiprocessing definition, 19-18
parameter tables, 19-13

OFSA_PROCESS_ID_RUN_OPTIONS
parameter, 19-13

OFSA_PROCESS_ID_RUN_OPTIONS_V
parameter, 19-13

OFSA_PROCESS_ID_STEP_RUN_OPT
parameter, 19-13

Performance Analyzer overrides, 19-19

principles, diagram, 19-3
Processing Engine Step, 19-12
replicating default setting from a previous

release, 19-23
Risk Manager overrides, 19-19
specifying parameters, 19-15
specifying parameters for a specific Process

ID, 19-16
Transfer Pricing overrides, 19-18
Transformation ID overrides, 19-18
tuning, 19-19
updating Ledger_Stat, 19-22
upgrading customized multiprocessing

environment, 19-24
worker processes, 19-30

OFSA tools
Ledger_Stat Load utility, 21-1 to 21-30
request queue, 20-1 to 20-30

OFSA_DB_INFO table, updating, 21-10
OFSA_PROCESS_DATA_SLICES table, 19-5
OFSA_PROCESS_DATA_SLICES_DTL table, 19-5
OFSA_PROCESS_ID_RUN_OPTIONS

parameter, 19-13
OFSA_PROCESS_ID_RUN_OPTIONS_V

parameter, 19-13
OFSA_PROCESS_ID_STEP_RUN_OPT

parameter, 19-13
OFS.INI settings, 20-9

[OFSRQ], 20-9
open_cursors parameter, 12-5
optimizer_percent_parallel, 10-9
OTHER_LEAF_COLUMNS placeholder

column, 16-48
output options, 11-34
overriding the multiprocessing definition, 19-18

P
parallel_max_servers, 10-8
parallel_min_servers, 10-9
parameter files, 10-3

db_file_multiblock_read_count, 10-7
open_cursors, 12-5

parameters
specifying for OFSA multiprocessing, 19-15

Index-10

partitioned tables and indexes
adding partitions, 18-29
creating partitions, 18-26
dropping partitions, 18-29
exchanging table partitions, 18-37
maintaining partitions, 18-27
merging adjacent table partitions

scenario, 18-37
merging partitioned indexes, 18-36
merging partitions, 18-35
merging table partitions, 18-36
moving partitions, 18-28
rebuilding index partitions, 18-38
splitting index partitions, 18-35
splitting partitions, 18-34
truncating partitions, 18-32

partitioning tables, 19-6
partitions

adding, 18-29
adjacent table

merging, 18-37
creating, 18-26
dropping, 18-29
index

rebuilding, 18-38
splitting, 18-35

maintaining, 18-27
merging, 18-35
moving, 18-28
splitting, 18-34
table

exchanging, 18-37
merging, 18-36

truncating, 18-32
password encryption changes, 12-30
Performance Analyzer overrides, 19-19
performance monitoring with

BSTAT/ESTAT, 18-4
library cache statistics, 18-8
system-wide statistics totals, 18-10

physical storage for the LEDGER_STAT
Transformation, 16-52

portfolio instrument table, described, 11-2
pre-upgrade database check

preparation steps, 12-19

running check.sql, 12-11, 12-19
procedures

ADD_LEAF procedure, 17-3, 17-4
Process ID conversion

new business leaves, 11-35
output options, 11-34
process type, 11-34

process tracking records, 20-21
process completion records, 20-21
process startup information records, 20-21

process type, 11-34
Processing Engine Step, 19-12

R
recursive calls, 18-13
redo log space requests, 18-13
redo size, 18-13
redo small copies, 18-13
registering

leaf columns, 17-2
registration

leaf column, 17-2
replicating default multiprocessing settings from a

previous release, 19-23
reporting utilities, 21-41

customizing control files, 21-43
request queue, 20-1 to 20-30

multi-host request queue, 20-27
single-host request queue, 20-1

re-registering objects with new leaf columns, 17-6
rights violation, 20-26
Risk Manager overrides, 19-19
rollback segment sizing and management, 18-38

create rollback segments with many equally sized
extents, 18-40

performance monitoring with
BSTAT/ESTAT, 18-4

set an optimal number of extents for each
rollback segment, 18-40

rollback segment statistics, 18-18
run_add_leaf script, 17-4
running check.sql, 12-11, 12-19
running concurrent loads with multiple load tables

undoing Ledger_Stat load updates, 21-28

Index-11

using the Create Offsets parameter, 21-30
using the Insert Only parameter, 21-29
using the Update Mode parameter, 21-29

running SET_DEFAULT_CURRENCY
procedure, 21-10

running the Ledger_Stat load procedure, 21-23
monthly Ledger_Stat load process, 21-23
running concurrent loads with multiple load

tables, 21-28

S
schema owner, security, 14-2
scripts

run_add_leaf script, 17-4
security

data, seeded, 14-15
entities (framework), 14-3
grant procedures, 14-11 to 14-14
password

aging, 14-10
expiration, 14-10
history, 14-10

privileges
client data objects, 14-5
dynamic objects, 14-6
login, 14-5
reserved objects, 14-5

privileges, database
assigning, 14-9
migrating from releases 3.5 and 4.0, 14-25
privileges for FDM release 4.5, 14-26
revoking, 14-9

privileges, errors
GenAuthKey errors, 14-24
Java class errors, 14-24
login errors, 14-23
operations errors, 14-24

privileges, for FDM release 4.5
applications, 14-27
menu (function), 14-27

privileges, grant all
analyze all, 14-13
dynamic privileges, 14-13
internal roles unassigned, 14-12

public synonyms (creating), 14-14
roles, 14-13
troubleshooting, 14-14

privileges, managing for migrated users, 14-29
privileges, migrating for application, 14-26
privileges, migrating for menu, 14-26
profiles, seeded, 14-20
Reporting Data Mart, managing, 14-22
responsibilities, administrative, 14-21
roles

external, 14-6
internal, 14-6
passwords, 14-7
registration, 14-7
sharing (data store), 14-7

roles, seeded, 14-15
external privileges, 14-17
internal privileges, 14-16
OFDM_R_BUSINESS_PROCESS, 14-19
OFDM_R_CLIENT_EXT, 14-20
OFDM_R_CLIENT_RPT, 14-19
OFDM_R_FDMA_RPT, 14-20
OFDM_R_GENERAL_RPT, 14-18
OFDM_R_REPORT_MART, 14-18
OFDM_R_RM_RPT, 14-18
OFDM_R_RTM_RPT, 14-19

schema owner, 14-2
user groups, seeded, 14-21

security, framework, 14-3
seeded default multiprocessing parameters, 19-10
seeded leaf columns, 17-1
server application arguments, 20-14

setting the common arguments, 20-15
server, UNIX, 6-1

core files, 6-36
guidelines, instance, creating and installing, 6-2
kernel parameters

changing system-wide parameters, 6-24
max_nproc parameter, 6-25
max_uprc parameter, 6-25
nproc parameter, 6-25
seminfo_semmni parameter, 6-24
seminfo_semmns parameter, 6-25
semmni parameter, 6-24
semmns parameter, 6-25

Index-12

shmmni parameter, 6-24
shmsys parameter, 6-24

memory requirements
Balance & Control, 6-26
Performance Analyzer, 6-27
Risk Manager, 6-29 to 6-31
total, for all applications, 6-26
Transfer Pricing, 6-27 to 6-29
Transformation Engine, 6-31

multiple instances, 6-37
optimization, SQL, 6-35
per-process resources

hdatlim, 6-25
shminfo_shmmax, 6-26
shminfo_shmmin, 6-26
shminfo_shmseg, 6-25
shmmax, 6-26
shmseg, 6-25
svmmlim, 6-25

request queue log file, 6-32
HP-UX server, 6-33
IBM-AIX server, 6-34
Sun server, 6-33

shared resource requirements, 6-22
shared resources, cleaning, 6-36
storage requirements, 6-2
user and group, creating, 6-3

server-centric applications
Compaq server, installing, 6-12

Budgeting & Planning web server, 6-13
Hewlett Packard server, installing, 6-8

Budgeting & Planning web server, 6-11
IBM-AIX server, installing, 6-12

Budgeting & Planning web server, 6-13
INI settings

LEDGER_STAT buffer size, 6-17
paths, configuring, 6-16
scenario-based run, 6-20
shared memory, 6-19
stochastic-based run, 6-21
transfer pricing migration, buffer size, 6-18
upsert method, 6-19

OFS.INI file, 6-14
Sun server, installing, 6-3

Budgeting & Planning web server, 6-6

multiple versions, 6-7
server-side

certification statement, 3-2
component, 4-1

services table, described, 11-2
servicing methodologies for units of work, 19-7
session failure, 20-26
SET_DEFAULT_CURRENCY procedure, 21-10
set_default_currency procedure, 21-9
setting the common arguments, 20-15

common database attachment method, 20-15
starting the application, 20-15

Setting up the physical structure of the Oracle
database

parameter files, 10-3
shared_pool_min_alloc, 10-6
shared_pool_reserved_size, 10-6
shared_pool_size, 10-6
single index for tree rollup transformation, 16-49
single servicing, units of work, 19-7
single-host request queue, 20-1

interpreting server job return messages, 20-24
launching, 20-4
OFS.INI settings, 20-9
server application arguments, 20-14
setting the application-specific

arguments, 20-16
troubleshooting, 20-19
TSER_REQUEST_QUEUE table, 20-13
using the rq script to set up, 20-4

sort_area_size, 10-8
specifying multiprocessing parameters for a specific

Process ID, 19-16
SQL*Net and NET8, 4-2
status and error messages, 20-22

application startup status messages, 20-22
error messages, 20-23
message box status messages, 20-22

Synchronize Instrument utility, running, 21-27
SYNCHRONIZE_INSTRUMENT procedure,

executing, 21-39
system description, 4-1 to 4-3

application components, 4-1
database connectivity, 4-2
database description, 4-3

Index-13

system environment, 4-2
system environment, 4-2

client/server environment, 4-2
data sourcing environment, 4-2

system event statistics, 18-15
system requirements, 5-1

client-side requirements, 5-1
system-wide statistics totals, 18-10

average length of dirty buffer write
queue, 18-16

cluster key scan block gets/scans, 18-11
consistent gets, 18-11
cumulative opened cursors, 18-12
data dictionary cache statistics, 18-19
date/time, 18-20
DBWR checkpoints, 18-11
file I/O statistics, 18-16
no_wait latch statistics, 18-18
recursive calls, 18-13
redo log space requests, 18-13
redo size, 18-13
redo small copies, 18-13
rollback segment statistics, 18-18
system event statistics, 18-15
table fetch by continued row, 18-14
table fetch by rowid, 18-14
tablespace I/O statistic totals, 18-17
user calls, 18-14
willing-to-wait latch statistics, 18-17

T
Table and Index Physical Storage Defaults

Storage Defaults Tables, 16-49
table and index physical storage defaults, 16-49

precedence of parameter definition levels, 16-52
storage defaults

by transformation type, 16-51
by transformation type + user, 16-51

table and view management, 18-25
Table Cannot be Found exception, 21-40
table fetch by continued row, 18-14
table fetch by rowid, 18-14
table partitioning, 19-6
tables

OFSA_PROCESS_DATA_SLICES table, 19-5
OFSA_PROCESS_DATA_SLICES_DTL

table, 19-5
tablespace I/O statistic totals, 18-17
template indexes, 16-46
template scripts, instrument table, 21-11
template tables and indexes, 16-45

indexes and dimension filters, 16-48
naming restrictions, 16-47
OTHER_LEAF_COLUMNS placeholder

column, 16-48
single index tree rollup transformation, 16-49
template indexes, 16-46
user-defined indexes, 16-48

temporary objects management, 16-63
obsolete objects, 16-63
user permissions, 16-64

thread division concept, 19-29
Transfer Pricing overrides, 19-18
Transformation ID

error recovery, 16-62
example, 16-57
leaf setup and output tables, 16-44
physical storage for the LEDGER_STAT

transformation, 16-52
routine cleanup, 16-62

deleting from OFSA_STP, 16-62
dropping obsolete transformation output

tables, 16-62
table and index physical storage defaults, 16-49
template tables and indexes, 16-45

Transformation ID error recovery, 16-62
Transformation ID overrides, 19-18
troubleshooting

interpreting the log file, 20-19
load procedure, 21-30
multi-host request queue, 20-30
process tracking records, 20-21
single-host request queue, 20-19
status and error messages, 20-22
types of errors written to the log file, 20-23

troubleshooting the leaf column registration
process, 17-8

TSER_REQUEST_QUEUE table, 20-13
tuning by application, 19-21

Index-14

tuning multiprocessing, 19-19
tuning the FDM database, 18-2
Types of Errors Written to the Log File

Database Errors, 20-24
types of errors written to the log file, 20-23

application errors, 20-23
asynchronous or concurrent processing

errors, 20-23
improper usage errors, 20-24
SQL syntax errors, 20-24
system resource errors, 20-24

U
unique indexes for Key columns, 17-7
unit of work concept, 19-2
units of work, 19-4

creating customized, 19-5
default definitions, 19-5
servicing, 19-6

cooperative servicing, 19-7
dedicated servicing, 19-8
methodologies, 19-7
single servicing, 19-7

worker processes, 19-10
worker processes example, 19-8

units of working
servicing, 19-29

UNIX server installation and configuration, 19-1
advanced options, 19-32
multiprocessing, 19-2

UNIX server. See server, UNIX
unregistering a leaf column, 17-10
Update Mode parameter, using, 21-29
updating Instrument and LEDGER_STAT tables for

functional currency, 21-10
updating Ledger_Stat for multiprocessing, 19-22
updating OFSA_DB_INFO table, 21-10
upgrade process. See FDM database upgrade

process
upgrading

implementing NumProcesses, 19-30
implementing thread division settings, 19-29

upgrading Budgeting & Planning database. See
Budgeting & Planning, database upgrade

upgrading customized multiprocessing, 19-24
upgrading database. See FDM database, upgrading
upgrading Discoverer. See Discoverer, upgrading
user calls, 18-14
user permissions, 16-64
user-defined indexes, 16-48
using the rq script to set up request queue

killing a previously launched request queue
instance, 20-8

setting operational parameters, 20-5
utilities

currency mapping, 21-5
utility

adding columns, 17-3
re-registering objects, 17-3

W
willing-to-wait latch statistics, 18-17
worker processes, 19-10, 19-30
worker processes service units of work,

examples, 19-8

	Send Us Your Comments
	Preface
	1 Introduction
	Oracle Financial Services Overview
	OFS Applications

	2 New Features and Terminology
	New Terminology
	OFSA versus FDM

	New Features
	Document Changes

	3 Certifications
	Server-Side Certification Statement
	Client-Side Certification Statement

	4 System Description
	Application Components
	Database Component
	Server-side Component
	Client-side Component

	System Environment
	Three-tier Client/Server Environment
	Data Sourcing Environment

	Database Connectivity
	A Network Protocol
	SQL*Net and NET8

	Database Description

	5 System Requirements
	Client-side Requirements

	6 UNIX Server Installation and Configuration
	Preparing Your Server for Installation
	Installation Choices
	Prior to Installation
	Storage Requirements
	Required User and Group

	Installing the OFSA Server-Centric Application
	Installing OFSA on Sun Servers
	Installing OFSA on a Hewlett Packard Server
	Installing OFSA on an IBM-AIX and Compaq Alpha Server
	Creating and Locating the OFS.INI File
	Components of the OFS.INI File

	Configuring OFSA Server-Centric Applications
	Application .INI Settings
	Configuring Paths
	Ledger_Stat Buffer Size
	Transfer Pricing Migration Buffer Size
	Upsert Method

	Shared Memory .INI Setting
	Calculating the Shared Memory Usage
	Changing the .INI Setting

	Determining Shared Resource Requirements
	Adjusting UNIX Kernel Parameters
	Effect of Changing Kernel Parameters
	Parameters Affecting System-wide Resources
	Shmmni (HPUX, Compaq), shmsys:shminfo_shmmni (Sun)
	Semmni (HPUX, Compaq), semsys:seminfo_semmni (Sun)
	Semmns (HPUX), semsys:seminfo_semmns (Sun)
	Nproc (HPUX, Compaq), max_nprocs (Sun)
	Maxuprc (HPUX, Sun, Compaq)

	Parameters Affecting Per-process Resources
	SVMMLIM
	HDATLIM
	Shmseg (HPUX, Compaq), shmsys:shminfo_shmseg (Sun)
	Shmmax (HPUX, Compaq), shmsys:shminfo_shmmax (Sun)
	Shmsys:shminfo_shmmin (Sun)

	Determining Application-Specific Memory Requirements
	Total Memory Requirements for the OFSA Group of Applications
	Memory Requirements for Balance & Control
	Memory Requirements for Performance Analyzer
	Memory Requirements for Transfer Pricing
	Transfer Pricing ID
	Prepayment ID
	Historical Rates ID
	Cash Flow Processing Structures
	Ledger_Stat Buffer Size
	Monte Carlo Rate Generator
	Size of Data Migration Array

	Memory Requirements for Risk Manager
	Prepayment ID
	Discount Rate ID
	Forecast Balance ID
	Maturity Strategy ID
	Pricing Margin ID
	Transaction Strategy ID
	Leaf Characteristics ID
	Formula Leaves ID
	Forecast Rates ID

	Memory Requirements for the Transformation Engine
	Ledger Transformation
	Risk Manager Transformation

	Configuring the Request Queue Log File
	Sun Environment Variables
	HP-UX Environment Variables
	IBM-AIX Environment Variables

	Other Configuration Issues
	Capturing SQL for Database Optimization
	.INI [debug] Section of the Application-specific .INI Files

	Core Files
	Cleaning Shared Resources
	Multiple OFSA Server-Centric Application Instances

	7 Client Software Installation and Configuration
	Verifying the Correct Client Workstation Software
	Verifying the Installation of the Client Workstation Environment
	Verifying the Installation of Your Network Protocol

	Installing the Client-Side OFSA Software
	Installing on Windows 95/98
	16-bit and 32-bit Installations
	Required Technology Components
	Installing the Software
	Installing the 16-bit Components
	Installing the 32-bit Components and OFSA Applications
	Installing Discoverer with FDM Administration
	Installing Budgeting & Planning
	Installing Discoverer Integrator
	Installing FDM Administration

	Installing the Documentation HTML Help Files
	Software Required for HTML Help Files
	Browser Support for HTML Help Files

	Configuring SQL*Net and Oracle NET8
	Establishing the Link Between the Client Workstation and the Database

	Configuring ODBC
	Modifying the OFS.INI File
	Data Sources
	Tree Rollup Save Behavior Settings
	Request Queue Communication Settings

	Upgrading the Client-Side Software
	Setting the Date Format in NT 4.0
	Troubleshooting Client Installations
	Running Multiple OFSA Applications Simultaneously
	.INI Settings
	Debug Settings
	Application-Specific Settings
	Balance & Control
	Performance Analyzer

	Client PC Memory Considerations

	8 Budgeting & Planning Server-Side Installation and Setup
	Before Installing Budgeting & Planning
	Installing the OFSA Group of Applications

	Budgeting & Planning Server Installation
	Installing the FSBPTOOL and FSLANG Databases
	Recovery Procedures
	Creating the Budgeting & Planning Structures and Data
	Coordinating Budgeting & Planning Metadata with the FDM Database
	Adding a User-defined Dimension
	Setting Operating System Privileges in UNIX
	Defining FSBPTOOL as the Primary Custom Database
	Backing Up the Budgeting & Planning and OFA Databases
	Configuring the OFA Subordinate Administrators

	Administering the Budgeting & Planning Databases
	Configuring the Web Listener and Java Client
	Testing the Technology Stack
	Creating the Virtual Directories
	Configuring the Timeout Parameters
	Installing the files into the virtual directory
	Editing the HTML Start Page
	Editing HTML Files for Internet Explorer
	Editing HTML Files for Netscape

	9 Budgeting & Planning Database Upgrade Process
	Installing the Technology Stack
	Testing the technology stack

	Installing the Budgeting & Planning Code Databases and Files
	If you are using NT…
	If you are using UNIX...

	Upgrading the Super Administrator’s Personal Database
	Completing the Database Upgrade Process

	10 FDM Database Installation
	Installing the Oracle Applications
	Installing the Oracle Database-related Components
	Checking the Installation for Errors or Failures

	Setting up the Physical Structure of the Oracle Database
	Structure Files
	Parameter Files
	Required Parameters for OFSA
	Performance Parameters for OFSA

	Packages
	Database Tablespaces and Datafiles
	FDM Tablespaces
	FDM Datafiles
	Table and Index Partitioning
	Partitioning Example

	Configuring the FDM Database
	Creating the Working Directories
	Setting init Parameters

	Creating the FDM Database
	Modifying the FDM Database Scripts
	Creating the Oracle Java VM
	Creating the FDM Schema
	Functional Currency
	Running the Install Procedure

	Completing the Procedure

	11 Upgrading from OFSA 3.5/4.0
	Rename of FDM Reserved Objects to OFSA_
	Portfolio Instrument and Services Tables
	Multi-Currency Enablement
	TP Option Cost Calculations
	Table Classification Validation

	Non-Portfolio Instrument Tables
	Multi-Currency Enablement
	Table Classification Validation

	LEDGER_STAT
	Multi-Currency Enablement

	Code Descriptions
	FDM Reserved Codes
	User Editable Codes
	User Defined Codes
	Interest Rate Codes
	Product Type Code

	Multiprocessing Settings
	Financial Elements
	PROCESS_CASH_FLOWS
	Collateral Data Model
	ID Conversions
	Allocation ID
	Add Missing Leaf Columns
	Remove Extraneous Leaf Columns
	Mirror to Table Update
	Error Messages

	Configuration ID
	Discount Rates ID
	Forecast Balance ID
	Upgrades from OFSA 3.5
	All Upgrades

	Forecast Rates ID
	Historical Rates ID
	Specifying Historical Rates ID Priority
	Interest Rate Terms
	Rates Conversion

	Leaf Characteristics ID
	Maturity Strategy ID
	Pricing Margin ID
	RM Process ID
	Upgrades from OFSA 3.5
	All Upgrades

	Term Structure ID
	TP Process ID
	OFSA_IDT_PROCESS
	OFSA_TP_PROC_TABLES
	OFSA_TP_RATE_PROPAGATIONS

	Transaction Strategy ID
	Transfer Pricing ID
	OFSA_IDT_TRANSFER_PRICE
	OFSA_TP_REDEMPTION_CURVE_DTL
	OFSA_TP_UNPRICED_ACCT_DTL

	12 FDM Database Upgrade Process
	Overview of the 4.5 Upgrade Process
	Limitations to the Database Upgrade Process
	Instrument Table Indexes
	Multiple LEDGER_STAT Tables (data_code = 7)

	Seeded Data Tables and Ranges Affected by the Upgrade

	Required Oracle Parameters for the FDM Upgrade Process
	Running the Metadata Migration
	Review Migration Requirements
	Historical Rates Conversion
	Functional Currency

	Prepare Database for Migration
	Run migrate_check.sql
	Run migrate.sql
	Review Migrate Logs
	Procedure Logs
	Metadata Conversion Logs

	Running the Upgrade Procedure
	Database Preparation
	Running check.sql
	Executing the Upgrade Procedure
	Reviewing the Upgrade Logs
	Primary Log Files
	Row Count Log File
	SQL Loader Logs
	ID Conversion Logs
	Internal Log Files (safe to ignore)

	Password Encryption Changes
	OFSA Database Problem Conditions and Solutions
	ID Errors
	Client IDs in seeded ID range
	Leaf Characteristics ID or Transaction Strategy ID has incorrect number of rows
	TP Process <sys_id_num> is using invalid Transfer Pricing ID

	General Errors
	Client data in the ofsa_correction_proc_msg_cd data range
	Existing Role conflicts with a seeded Role
	Functional Currency not defined or invalid in OFSA_TEMP_DB_INFO
	INIT.ora parameters not correct
	Invalid data in OFSA_TEMP_IRC_45
	o_ tables have been found

	Leaf Errors
	Client data in the detail_elem (or ofsa_detail_elem) seeded data range
	Client data in the leaf_desc (or ofsa_leaf_desc) seeded data range
	Column_name is null in ofsa_detail_elem
	Duplicate column_name values in ofsa_detail_elem

	User Errors
	Identical User or User Group names
	User running the upgrade must be the FDM schema owner
	User conflicts with seeded Recipient Name or ID Folder
	User conflicts with User Group to be created
	User conflicts with Security Profile to be created
	User or Group in CATALOG_OF_USERS not uppercase
	User <username> in HARV_USER not uppercase
	<group_name> not a valid User Group

	SYSTEM_CODE_VALUES Errors
	Alpha values found in numeric columns
	Column_name in SYSTEM_CODE_VALUES not uppercase
	Instrument values in SYSTEM_CODE_VALUES not uppercase
	Duplicate values in SYSTEM_CODE_VALUES
	NULL values in SYSTEM_CODE_VALUES

	SYSTEM_INFO Errors
	Duplicate DISPLAY_NAME values in SYSTEM_INFO
	Null values found in SYSTEM_INFO columns
	Tables in SYSTEM_INFO have the same display_name
	Table, Column Name or Related_Field in SYSTEM_INFO not uppercase

	13 Installing and Configuring Discoverer
	Overview of Discoverer Business Areas
	Installing the End User Layer
	Upgrading Business Areas from Previous OFSA Versions
	Importing OFSA Business Areas for Discoverer
	Market Manager Business Areas and Standard Reports
	Installing and Configuring the OFSA Standard Reports

	14 FDM Security
	FDM Schema Owner
	Database and Application Privileges
	FDM Security Framework
	Universal Login
	Database Object Privileges
	Privileges for FDM Reserved Objects
	Privileges for Client Data Objects
	Privileges for Dynamic Objects

	Roles
	Internal and External Roles
	Role Registration
	Sharing Roles within a Data Store
	Role Passwords

	Assigning and Revoking Database Privileges
	Assigning Database Privileges
	Revoking Privileges

	Oracle Password Aging, Expiration and History
	FDM Grant Procedures
	Grant All Object Privileges
	Grant All Roles
	Grant All Dynamic Privileges
	Analyze All Objects
	Create Public Synonyms
	Troubleshooting FDM Grants Procedures

	Supporting Seeded Data
	Roles
	Security Profiles
	User Groups

	Division of Administrative Responsibilities
	Managing Security for the Reporting Data Mart
	Troubleshooting Privilege Errors
	Migration from Version 3.5 or 4.0 Security
	Migration of Database Privilevges
	Database Privileges in OFSA 3.5 and 4.0
	FDM 4.5 Database Privileges for Migrated Users

	Migration of Application and Menu Privileges
	Application and Menu Privileges in OFSA 3.5 and 4.0
	FDM 4.5 Application and Menu (Function) Privileges for Migrated Users

	Guidelines for Managing Security Privileges of Migrated Users
	Removal of Security Filter

	15 FDM Multi-Language Support
	Session Language
	MLS Database Structures
	The OFSA_MLS Table
	Base Tables
	MLS Tables
	Language Compatible Views

	Creating MLS Objects
	Create the Base Table
	Create the MLS Table
	Create the Language Compatible View
	Create the Database Triggers
	Base Table Trigger
	Language Compatible View Trigger

	Register Objects in FDM Administration
	Table Classification Assignments
	Description Table Mapping

	Seeded MLS Objects
	FDM Metadata Tables
	Code Description Tables

	16 FDM Object Management
	FDM Database Environment
	Object Registration
	Object Identification
	Identifying Objects from Other Schemas

	Column Properties
	Table Classifications
	User Assignable Table Classifications
	FDM Reserved Table Classifications
	Dynamic Table Classifications

	FDM Table Properties
	Column Name Table Properties
	Stored Procedure Table Properties

	Description Table Mapping

	Client Data Objects
	Instrument and Account
	Creating New Instrument and Account Tables
	Using Views
	Registering Tables in other Schemas
	Seeded Instrument and Account Tables

	User-Defined Code Descriptions
	Single Language Environment
	Multi-Language Environment
	Managing Data for User Defined Code Descriptions

	LEDGER_STAT
	Loading Data into LEDGER_STAT
	Maximum Number of Leaves on LEDGER_STAT

	Free Form

	Risk Manager Results Tables
	Types of Results Tables
	Scenario Based Results Tables
	Earnings at Risk Results Tables

	Dynamic Results Table Definition

	Transformation Output Tables
	Leaf Setup and Output Tables
	Template Tables and Indexes
	Template Indexes
	Naming Restrictions
	The OTHER_LEAF_COLUMNS Placeholder Column
	User-Defined Indexes
	Indexes and Dimension Filters
	A Single Index for the Tree Rollup Transformation

	Table and Index Physical Storage Defaults
	The Storage Defaults Tables
	Storage Defaults by Transformation Type
	Storage Defaults by Transformation Type + User
	Ordering the Parameter Definition Levels

	Physical Storage for the Ledger Stat Transformation
	Fitting Into Available Freespace
	Computing INITIAL and NEXT Storage Parameters
	Usage Summary
	Recommended Usage

	Creating Transformation Output Tables and Indexes: An Example
	Routine Cleanup
	Dropping Obsolete Transformation Output Tables
	Deleting from OFSA_STP

	Transformation ID Error Recovery

	Temporary Objects
	Message and Audit Objects
	Audit Tables
	OFSA_AUDIT_TRAIL
	OFSA_PROCESS_CASH_FLOWS
	OFSA_STP

	Message Tables
	OFSA_PROCESS_ERRORS
	OFSA_MESSAGE_LOG

	Packages, Procedures, and Java Classes
	Views and Triggers
	Seeded Data Tables and Ranges
	FDM Metadata Seeded Tables
	Seeded Range Reserved
	Range Reserved FDM and Market Manager Shared Tables
	Seeded Range Reserved FDM Only Tables
	Seeded Range Reserved Market Manager Only Tables

	Seeded Unreserved
	Seeded Unreserved FDM and Market Manager Shared Tables
	Seeded Unreserved FDM Only Tables
	Seeded Unreserved Market Manager Only Tables

	17 FDM Leaf Management
	Seeded Leaf Columns
	Leaf Registration
	Registering a Leaf Column
	Step 1: Adding the column to required Objects
	Step 2: Re-register Objects
	Step 3: Modify Unique Indexes
	Step 4: Assign the Processing Key Column Property
	Step 5: Register the Leaf Column

	Troubleshooting Leaf Registration
	Leaf Column already identified as a Portfolio Column
	Leaf Column is not registered as FDM Data Type LEAF
	Column not part of the Process Key

	Unregistering a Leaf Column

	Managing Leaf Values

	18 FDM Database Performance Management
	Tuning the FDM Database
	Performance Monitoring with BSTAT/ESTAT
	BSTAT Tables and Views
	ESTAT Tables and Views
	Executing BSTAT/ESTAT
	Library Cache Statistics
	System-Wide Statistics Totals
	DBWR Checkpoints
	Cluster Key Scan Block Gets/Scans
	Consistent Gets and DB Block Gets
	Cumulative Opened Cursors
	Recursive Calls
	Redo Size
	Redo Log Space Requests
	Redo Small Copies
	Table Scans
	Table Fetch by Rowid
	Table Fetch by Continued Row
	User Calls

	System Event Statistics
	Average Length of Dirty Buffer Write Queue

	File I/O Statistics
	Tablespace I/O Statistic Totals
	Willing-To-Wait Latch Statistics
	No_Wait Latch Statistics
	Rollback Segment Statistics
	Init.ora Parameters
	Data Dictionary Cache Statistics
	Date/Time

	Index Management
	Create Indexes After Inserting Table Data
	To Manage a Large Index

	OFSA-Specific Details
	Multiprocessing
	Updating Statistics
	Originally Supplied Indexes in FDM
	General Recommendations

	Managing Partitioned Tables and Indexes
	Creating Partitions
	Maintaining Partitions
	Moving Partitions
	Adding Partitions
	Dropping Partitions
	Truncating Partitions
	Splitting Partitions
	Splitting Index Partitions
	Merging Partitions
	Merging Table Partitions
	Merging Partitioned Indexes
	Exchanging Table Partitions
	Merging Adjacent Table Partitions: Scenario
	Rebuilding Index Partitions

	Rollback Segment Sizing and Management

	19 OFSA Multiprocessing
	Multiprocessing Model
	Multiprocessing Options
	Units of Work
	Default Unit of Work Definitions
	Creating Customized Unit of Work Definitions

	Unit of Work Servicing
	What is Partitioning?
	What is Unit of Work Servicing?
	Examples of How Worker Processes Service Units of Work

	Worker Processes

	Specifying Multiprocessing Parameters
	Multiprocessing Assignment Levels
	Processing Engine
	Processing Engine Step
	OFSA IDs

	Defining Multiprocessing
	Parameter Tables
	How to Specify Parameters

	Engine Overrides
	Transfer Pricing
	Transformation ID
	Risk Manager
	Performance Analyzer

	Tuning Multiprocessing
	Ledger_Stat Updating
	Special Considerations

	Migration from OFSA 3.5/4.0
	Upgrading from OFSA 3.5/4.0 Default Multiprocessing
	Upgrading from OFSA 3.5/4.0 Customized Multiprocessing
	Units of Work
	Identifying Custom Unit of Work Definitions
	Assigning Unit of Work Definitions

	Unit of Work Servicing
	Worker Processes

	Examples

	20 Request Queue
	Single-Host Request Queue
	Using Request Queue
	Launching Request Queue
	Using the rq Script to Set Up Request Queue

	OFS.INI Settings
	Command Line Examples
	The OFSA_REQUEST_QUEUE Table
	Server Application Arguments
	Setting the Common Arguments

	Setting the Application-specific Arguments
	Balance & Control
	Performance Analyzer
	Transfer Pricing
	Risk Manager

	Troubleshooting
	Interpreting the Log File
	Process Tracking Records
	Status and Error Messages
	Types of Errors Written to the Log File

	Interpreting Server Job Return Messages
	Bad Usage
	Connect Failure
	Failed on Fork
	Internal Error
	Job returned: <number>
	Making Request
	No memory
	None: canceled
	None: running
	No�.ini found
	Normal
	Rights Violation
	Session Failure

	Multi-Host Request Queue
	Installation and Configuration
	Launching Dynamic Multi-Host Request Queue
	Using the mrq Script to Set Up Dynamic Multi-Host Request Queue
	Configuring Dynamic Multi-Host Request Queue

	Client Software Changes - Server Status Window
	Database Changes - RQ_STATUS Table
	Additional Multi-Host OFS.INI Parameters
	Troubleshooting
	Host Crashes
	Master Request Queue Hangs
	Debug Option

	21 FDM Utilities
	Add Leaf
	Currency Mapping
	Changing Functional Currency
	Updating OFSA_DB_INFO
	Updating Instrument and LEDGER_STAT Tables
	Running SET_DEFAULT_CURRENCY

	Instrument Templates
	Ledger Stat Load
	Features
	Overview of the Load Process
	Limitations

	Setup for the Ledger_Stat Load Utility
	Customizing lsview.sql
	Customizing lsldtbl.sql
	Customizing lsload.ctl
	Running lsview.sql
	Running lsldtbl.sql For Each Load Table

	Running the Ledger_Stat Load Procedure
	The Monthly Ledger_Stat Load Process
	Running Concurrent Loads with Multiple Load Tables
	Undoing Ledger_Stat Load Updates
	Using the Update Mode Parameter
	Using the Insert Only Parameter
	Using the Create Offsets Parameter
	Troubleshooting the Load Procedure

	Modify Balance Column Size
	Recompiling Packages, Procedures, and Java Classes
	Recompiling Views and Triggers
	Instrument Synchronization
	Tables Requiring Synchronization
	Leaf Synchronization

	Codes Synchronization
	Performance Analyzer Undo Statistics
	Executing the SYNCHRONIZE_INSTRUMENT Procedure
	Exception Messages
	Exception 1: Invalid table
	Exception 2: Table is not an Instrument or LEDGER_STAT table
	Exception 3: Leaf Desc has invalid seeded Financial_Elem_ID values
	Exception 4: Table has invalid seeded FINANCIAL_ELEM_ID values

	Reporting Utilities
	Overview
	Customizing the Control Files

	22 Sending Databases to Oracle Support Services
	Requirements of Oracle Support Services

	A Functional Currencies
	Acceptable Values

	Glossary
	Index

